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A striking feature of many sensory processing problems is that there appear to be many more neurons
engaged in the internal representations of the signal than in its transduction. For example, humans have
about 30,000 cochlear neurons, but at least a thousand times as many neurons in the auditory cortex. Such
apparently redundant internal representations have sometimes been proposed as necessary to overcome
neuronal noise. We instead posit that they directly subserve computations of interest. We first review how
sparse overcomplete linear representations can be used for source separation, using a particularly difficult
case, the HRTF cue (the differential filtering imposed on a source by its path from its origin to the cochlea)
as an example. We then explore some robust and generic predictions about neuronal representations that
follow from taking sparse linear representations as a model of neuronal sensory processing.

1 Sparse Separation

For expository purposes, we will review sparse separation
[1, 2] in the context of just one sort of cue—that provided
by the differential filtering (HRTF) imposed on a source
by its path from its origin in space to the cochlea [3]. For
this example, all sounds from a given position are defined
to belong to the same source, and any sounds from a dif-
ferent position are defined to belong to different sources.
We will focus on the separation problem, and assume that
source localisation occurs by other mechanisms.

Consider N acoustic sources xi(t), for i = 1, . . . , N ,
located at known distinct positions. Associated with each
position is a known “HRTF” filter hi(t). The signal at the
ear and consists of a superposition of the filtered sources

y(t) =

N∑

i=1

hi(t) ∗ xi(t) =

N∑

i=1

x̃i(t) (1)

where ∗ indicates convolution and x̃i(t) ≡ hi(t) ∗ xi(t)
is the post-filter ith source in isolation. Our goal is to
recover the xi(t) from y(t), using knowledge of the hi(t).

We now invoke “sparseness”, and assume that each
source can be expressed as a linear combination of a po-
tentially overcomplete, and not necessarily orthogonal,
set of signal dictionary elements qj(t),

xi(t) =
∑

j

cij qj(t). (2)

Under our sparseness assumption, we can recover

ci = arg min
ci

‖ci‖1 subject to Qci = xi (3)

where the qj form the columns of signal dictionary Q,
and ci and xi are column vectors holding the elements

of cij and xi(t). This is a convex optimisation problem
which is often solved using linear programming.

We now build a new signal dictionary D consisting of all
the elements qj(t) filtered by each filter hi(t). Column ij

of D is constructed by convolution.

dij(t) = hi(t) ∗ qj(t) (4)

The signal received at the ear can be decomposed as

y(t) =
∑

i

hi(t) ∗ xi(t) =
∑

ij

cij dij(t) (5)

and all the coefficients cij recovered jointly using

c = arg min
c

‖c‖1 subject to Dc = y (6)

where c is a single column vector consisting of all the
coefficients cij , and y is a column vector holding y(t).

The recovered coefficients can be seen both as represent-
ing the separated contributions of the individual sources
in sensor space (as received at the ear),

x̃i(t) =
∑

j

cijdij(t) (7)

and as representing the separated sources source space,
reconstructed using Eq. 2. Thus the procedure not only
performs unmixing (separation), but also unfiltering (de-
convolution).

This framework can exploit other cues. Let us consider
one: the binaural cues of differential attenuation and la-
tency. To incorporate these, each hi(t) function is made
single-input two-output, and the lengths of the column
vectors dij the observation vector y are doubled.

Eq. 6 can be sensitive to noise. Fortunately a noise model
can be added while keeping the problem convex. In par-
ticular, we can assume that the total amount of noise is
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Figure 1: Non-negative matrix factorisation (NMF)
decomposition of musical sources. (A) Spectrogram of
a brief segment of a cello. Each musical piece was bro-
ken into an ensemble of such segments. (B) NMF was
used to find a compact representation of the ensemble in
(A). The spectrogram of a sample element is shown here.
Note that power is concentrated in the fundamental fre-
quency, reflecting a musical note, but that higher harmon-
ics are clearly visible. When all elements were played in
sequence, the elements sound like a crude musical scale.
Similar ensembles were computed for other instruments
(harp, violin, etc.) Note that this element, which reflects
statistical correlations present in the sources, is an exam-
ple of qj(t) defined in Eq. 2; it is the filtered versions
dij(t) that determine the cij via Eq. 6.

bounded, resulting in the reformulation

arg min
c

‖c‖1 subject to ‖Dc − y‖p ≤ β (8)

where β is proportional to the noise level and with p = 1,
2, or ∞. The Gaussian noise case, p = 2, can be solved
by semidefinite programming methods. Both p = 1 and
p = ∞ can be solved using linear programming. All ap-
proaches yield qualitatively similar results. The solutions
presented here all used p = 1.

2 Sample Application

We use the above procedure to separate acoustic sources
consisting of mixtures of music, natural sounds and
speech. This requires a signal dictionary qj(t), which is
a problem outside the scope of this paper.

2.1 Finding a Signal Dictionary using NMF

Finding good overcomplete dictionaries from samples of
a stimulus ensemble is a subject of ongoing research [4].
We used nonnegative matrix factorisation (NMF) to gen-
erate a set of basis features from spectrograms obtained
from samples of solo instrumental music, natural sounds
and speech (Fig. 1). NMF is an algorithm for factoring
a data matrix—a matrix whose columns contain the snip-
pets of solos—under non-negativity constraints [5]
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Figure 2: Separation of three musical sources. Three
musical instruments at three distinct spatial locations
were filtered (by h1, . . . ,h3, respectively) and summed
to produce the input y, and then separated using a sparse
overcomplete representation to produce the output. Note
that two of the sources (a flute playing the note “B”, left
and center) were chosen to be identical; this example is
thus particularly challenging, since the only cue for sep-
arating the sources is the filtering imposed by the HRTF.
Nevertheless, separation was good (compare top and bot-
tom rows).

When applied to music, NMF typically yielded elements
suggestive of musical notes, each with a strong funda-
mental frequency and weaker harmonics at higher fre-
quencies. In many cases, listeners could easily use tim-
bre to identify the instrument from which a particular el-
ement was derived. When applied to sounds from other
ensembles (speech and natural sounds), NMF yielded el-
ements that had rich harmonic structure, but it was not in
general easy to “interpret” the elements (e.g. as vowels).
Nonetheless, these elements still captured aspects of the
statistical structure of the underlying ensemble of sounds.

2.2 Separation Performance

To test the model’s ability to separate sources, we gener-
ated digital mixtures of three sources positioned at three
distinct positions in space (Fig. 2). On the top row are
the spectrograms of the sources at their origin. Note that
two of the sources (a flute playing the note “B”, left and
center) were chosen to be identical; this example is thus
particularly challenging, since the only cue for separating
the sources is the filtering imposed by the HRTF.

Separation was nevertheless quite successful (compare
top and bottom rows). These results were typical: when-
ever the underlying assumptions about the sparseness of
the stimulus were satisfied, sources consisting of mix-
tures of music, natural sounds or speech were all sep-
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arated well. Fig. 3 shows that separation without pre-
filtering by the HRTF was unsuccessful, as was separa-
tion using a “dense” representation obtained via the pseu-
doinverse of the signal dictionary with c = D∗ y.

The representations underlying separation provide in-
sight into these results. Fig. 4A shows the representa-
tions of each of the three sources (the same as in Fig. 2)
presented in isolation. In each panel, the activity in a
population of 3,600 neurons is indicated by the intensity
of points on a 60 × 60 grid. Since the sources occupy
three positions j, there are three copies of the basis qi

in each panel (corresponding to the three filters hj). The
activity patterns are sparse; only a relatively small num-
ber of units are active in each representation. Note that
because the left and the middle sources in this example
were chosen to be identical, the left and middle neural
representations differ only by a shift.

The procedure for recovering a source is straightforward:
the estimate of the left source is simply the summed ac-
tivity of the left third of the neurons—those represent-
ing features pre-filtered by the HTRF corresponding to
the leftmost position in space; and likewise for the mid-
dle and right thirds. The HRTF can thus be seen as a
kind of “tag” for grouping together elements from a sin-
gle source. This suggests dividing source separation into
two conceptually distinct steps (although in practice the
steps occur simultaneously). In the first step, the stim-
uli are decomposed into the appropriate features. In the
second step, the features are tagged and bundled together
with other features from the same source. It is for this
bundling step that the HRTF is essential.

The failure of the dense representation to separate sources
(Fig. 3) results from a failure of the first step. The failure
of even the sparse approach when the spectral cues in-
duced by the HRTF are absent results from a failure at the
second step. That is, the sparse approach finds a useful
decomposition at the first step even without the HRTF, but
without the HRTF cues the active features are not tagged,
and so the features cannot be assigned appropriately to
distinct sources.

3 Neural Model

We have reviewed how finding a maximally sparse lin-
ear representation in a suitably chosen overcomplete ba-
sis can directly solve a difficult signal processing prob-
lem. We now take this as a model of neuronal sensory
processing, and posit that neuronal activities in primary
auditory cortex (A1) correspond to the coefficients cij .

Although simply assumed in Eq. 2 to constitute a suitable
sparse dictionary, the elements qj(t) reflect statistical cor-
relations within sources; each source typically consists
of several such features. These features can be thought

Music S p e e ch

1 5

1 0

5

0

SN
R 

(dB
)

Sparse without HRTF
Sparse with HRTF
D en se without HRTF
D en se with HRTF

N a t ur a l  so un d s

Figure 3: Performance of different separation ap-
proaches on ensembles of music, natural sounds, and
speech. The SNR, across sources, is shown (left) for the
musical ensemble, (center) the natural sounds ensemble,
and (right) the speech ensemble. Excellent separation
was achieved in all cases when the HRTF was known and
a sparse prior was assumed.

of as an internal model of the components of acoustic
sources, in the same way that edges might be thought of
as components of visual sources (objects). However, be-
cause the neural representation involves pre-filtering with
the HRTF (Eq. 4), each feature dij(t) is better thought
of as representing the hypothesis that an element qj(t) is
present at position i. In the same way, neurons in the pri-
mary visual cortex can be thought of as representing the
hypothesis (dij) that an oriented edge (qj) is present at a
particular position (i) in the visual field. In other words,
the elements qj(t) reflect only the properties of the stim-
ulus, whereas the features dij(t) arise from interaction of
these elements with the sense organs.

Our choice of NMF was merely one of convenience. We
would not expect to find a precise correspondence be-
tween the features obtained by NMF and those observed
in the auditory cortex. For this reason, our emphasis be-
low will be not on the signal dictionary elements them-
selves, but rather on how they work together to form a
representation that separates sources. We therefore turn
our attention to making generic predictions: predictions
which are not sensitive to the details of the signal dictio-
nary, or for that matter to the specifics of the noise model
or the particular measure of sparseness.

4 Experimental predictions

Our model makes at least three experimentally testable
predictions about the nature of the neural representation
underlying source separation.
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Figure 4: Representations underlying source separa-
tion. Each panel shows the activity of a population
of 3,600 neurons, corresponding to the 3,600 features
dij = hj ∗ qi. The intensity of each dot in the 60 × 60
grid is proportional to the log of the firing rate of each
neuron. Since the sources occupy three positions j, there
three copies of the basis qi in each panel (corresponding
to the three filters hj). The copies are arranged from left
to right for convenience, and separated by vertical lines.
However, the arrangement is for purposes of illustration
only; we do not mean to imply any spatial organisation
of sources within the cortex. The sources are the same
as in the previous figure. (A) Sparse representations of
the three sources (corresponding to the original spectro-
grams in Fig. 2) presented in isolation. Only a relatively
small number of units are active in each panel. (B) Sparse
representation of the mixed sources (input spectrogram in
Fig. 2). Note that activity is approximately the sum of the
activities of the isolated sources in (A). (C) Dense repre-
sentation of the mixed sources. Note that most units are
active.

4.1 Linear decoding & nonlinear encoding

Our model predicts that the encoding function is nonlin-
ear but that the optimal decoding function is linear. Here
decoding refers to the process of “reading out” a neural
representation (e.g. by forming an estimate or reconstruc-
tion of the stimulus), whereas encoding refers to the pro-
cess by which the nervous system constructs a pattern of
neural activities from a stimulus.

It is sparseness that induces the nonlinear encoding; more
precisely, the L1 measure of sparseness induces a piece-
wise linear encoding function (Fig. 5). Sparseness im-
plies that only at most Nrow out of the possible Ncol fea-
tures dij are active in the representation of a particular
stimulus; the precise subset of active neurons changes for
different stimuli. Piecewise linearity arises because the
encoding function is linear for all stimuli that activate the
same subset of features, but changes for different subsets.

The prediction that there is an asymmetry between the
linearity of the decoding function and the nonlinearity
of the encoding function can be tested experimentally.
Given an ensemble of stimulus-response pairs (i.e. the
neural responses to an ensemble of sounds), our model
predicts that a stimulus reconstruction approach (i.e. a
decoding model) will outperform a “forward” (i.e. encod-
ing) model.

The idea that a linear approximation is better suited for
the neural decoding than encoding function was first ex-
ploited to estimate the information rate of fly visual neu-
rons [6]. Our model provides a novel, principled expla-
nation for this asymmetry in the context of overcomplete
sparse representations. To our knowledge, this asymme-
try has not been reported for high-level auditory represen-
tations. This prediction thus provides a strong test, since
failure to observe the asymmetry will falsify our model.

4.2 Context-dependence of STRFs

A further prediction that follows from the piecewise lin-
earity of the encoding function is that the linear com-
ponent of receptive fields should depend on the acoustic
context. Following conventional usage in auditory phys-
iology, we will use the term spectrotemporal receptive
field, or STRF, to refer only to the linear component of
the encoding function, even though the encoding function
itself may be highly nonlinear [7–9]. (In visual physi-
ology, “STRF” is used to refer to the “spatial temporal
receptive field,” but the quantities are analogous). The
STRF is the analog (in a high-dimensional input space)
of the slope of a neuron’s tuning curve in

In an experimental setting, piecewise linearity predicts
that the STRF should depend on the acoustic context. We
define the acoustic context of a feature dij with respect
to a stimulus y as the collection of other features acti-
vated simultaneously by that stimulus. In music, for ex-
ample, the features tend to resemble musical notes, and
the acoustic context can be thought of as the set of notes
(e.g. in a chord) that accompany a given note. Fig. 6
shows the STRF of the same neuron (a trumpet feature) in
two different contexts (either clarinet or flute). The gross
features of the STRF (e.g. the excitatory band around
880 Hz) are preserved in both contexts, but the secondary
features (e.g. the addition of an inhibitory sideband) is
context-sensitive. Changes in the STRF for different fea-
tures and different contexts can be larger or smaller than
in this example. Stimulus context thus changes the neural
encoding function, suggestive of the non-classical recep-
tive field modulation observed in visual cortex [10].

Context-dependence as defined here is stronger than sim-
ple nonlinearity. Specifically, the prediction is that there
should exist extended subregions of stimulus space where
the encoding function of a given target neuron is one lin-
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Figure 5: Piecewise linear encoding. (A) Three features
in two dimensions constitute an overcomplete basis. A
sample signal y is indicated with an ‘∗’. (B) Tuning
curves for the three features are piecewise linear. The
firing rate of each of the three units in (A) is given as a
function of angle for stimuli of unit length; the point y

in (A) is at about 45◦. Because the sample space is two-
dimensional, any given point is represented by at most
two active neurons. Decoding is linear: the point y is
recovered by a weighted sum of the features, with the
corresponding neural activities constituting the weights.
Encoding, however, is nonlinear: the slope of all active
neurons’ activation functions can change at the bound-
aries, whenever any neuron becomes active or inactive.
This principle generalises to the other examples in this
paper, in which the dimensionality (given by the number
of elements in the spectrogram) is much higher.

ear function, and across some boundary in stimulus space
switch to a second linear function. These boundaries are
demarcated by the activation of another (non-target) neu-
ron in the population and the de-activation of a second
(non-target) neuron (Fig. 5). This prediction could be
tested using a multi-neuron recording technique.

The locally linear encoding induced by sparseness may
help reconcile some of the apparent contradictions in the
auditory literature. STRFs obtained using a “moving rip-
ple” basis can predict responses to linear combinations
of basis elements [7]. However, linear encoding (STRF)
models fail to predict neural responses when the stimulus
domain is extended to include a wide selection of com-
plex sounds [11, 12], consistent with the idea that rip-
ples represent a subspace within which encoding is lin-
ear. Context sensitivity may also provide an explanation
for a proposed neural correlate of comodulation mask-
ing release in which the addition of a pure tone can sup-
press the response to temporally-modulated noise [13];
this form of contextual modulation cannot be explained
by any purely linear encoding model.

4.3 Optimal feature estimation requires
multi-neuron recording

In our model, the firing rate cij of a neuron {i j} is max-
imised when the stimulus matches that neuron’s feature,
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Figure 6: Dependence of STRF on context. (A) Spec-
trogram of trumpet feature, showing a strong fundamen-
tal around 880 Hz and several higher harmonics. (B,C)
The STRFs corresponding to the feature in (A) when that
feature is played in two different contexts (clarinet or
flute played simultaneously), derived under the assump-
tion of a sparse neural representation. The STRF pro-
vides the encoding from the stimulus to neural activity.
The colour at any point of the STRF indicates the value
(in spikes/second) of the kernel which is convolved with
the spectrogram of the stimulus to generate a neural re-
sponse. Under the sparse assumption, the encoding is
piecewise linear, and the STRFs shown are two out of
the many possible pieces. The STRF is obtained from
the appropriate row of the matrix D�

k (see Methods). (D)
The difference between the two spectrograms. Note that
they show the same basic harmonic structure, but differ in
details such as the relative contributions of the excitatory
and inhibitory sidebands. The differences can be as large
as the STRFs themselves.

i.e. when y = dij . Since the feature dij is used in the
linear reconstruction of the stimulus from the neural ac-
tivities (Eq. 5), one might imagine that the optimal stim-
ulus (i.e. the stimulus that maximises the firing rate) can
be obtained by estimating the optimal linear decoder. Ex-
periments based on this idea have shown that the optimal
linear decoder can sometimes drive neurons in the audi-
tory cortex to fire vigorously [14].

Surprisingly, our model predicts that this linear estimate
of the decoder is not the optimal stimulus, even though
the optimal decoder is linear. Instead, finding the optimal
stimulus requires recording from all neurons involved in
the representation. This is because the dij are not orthog-
onal. Note that in our model, optimal decoding (Eq. 5)
need not take neural correlations into account, even when
they are present. The phenomenon is illustrated in Fig. 7.

When the optimal linear decoder is estimated from only
the target neuron, the firing rate is sub-maximal. As the
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Figure 7: Stimulus optimisation requires multi-neuron
recording. The y-axis shows the simulated firing rate of
a target neuron (normalized to its maximum firing rate) in
response to the presentation of the optimal linear decoder
constructed by recording the activity of a target neuron
and a variable number of other neurons. When the opti-
mal linear decoder is estimated from only the target neu-
ron, the firing rate is sub-maximal. As the number of
neurons used in this simulation to estimate the optimal
linear decoder is increased (x-axis), the response of the
target neuron converges to unity, indicating that optimal
decoder has converged to the target neuron’s feature.

number of neurons used to estimate the optimal linear de-
coder is increased (x-axis), the response of the target neu-
ron converges to unity, indicating that optimal decoder
has converged to the target neuron’s feature. This repre-
sents a novel and testable prediction of the model. Note
that although in principle the activity of all neurons in-
volved in the representation must be recorded, in practice
the activity of even a few can be useful.
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