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ABSTRACT

The blind soure separation problem is to extrat the

underlying soure signals from a set of linear mix-

tures, where the mixing matrix is unknown. We on-

sider a two-stage separation proess. First, a pri-

ori seletion of a possibly overomplete signal ditio-

nary (e.g. wavelet frame, learned ditionary, et.) in

whih the soures are assumed to be sparsely repre-

sentable. Seond, unmixing the soures by exploiting

the their sparse representability. We onsider the gen-

eral ase of more soures than mixtures, but also de-

rive a more eÆient algorithm in the ase of a non-

overomplete ditionary and equal numbers of soures

and mixtures. Experiments with arti�ial signals and

with musial sounds demonstrate signi�antly better

separation than other known tehniques.

1. INTRODUCTION

In blind soure separation an N -hannel sensor signal

x(t) arises fromM unknown salar soure signals s

i

(t),

linearly mixed together by an unknown N �M matrix

A, and possibly orrupted by additive noise �(t)

x(t) = As(t) + �(t) (1)

We wish to estimate the mixing matrix A and the M -

dimensional soure signal s(t). Many natural signals

an be sparsely represented in a proper signal ditio-

nary

s

i

(t) =

K

X

k=1

C

ik

'

k

(t) (2)

The salar funtions '

k

(t) are alled atoms or ele-

ments of the ditionary. These elements do not have

to be linearly independent, and instead may form

an overomplete ditionary. Important examples are
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wavelet-related ditionaries (wavelet pakets, station-

ary wavelets, et., see for example [1, 2℄ and refer-

enes therein), or learned ditionaries [3, 4, 5℄. Sparsity

means that only a small number of the oeÆients C

ik

di�er signi�antly from zero.

We onsider a two stage separation proess. First, a

priori seletion of a possibly overomplete signal ditio-

nary in whih the soures are assumed to be sparsely

representable. Seond, unmixing the soures by ex-

ploiting their sparse representability.

In the disrete time ase t = 1; 2; : : : ; T we use ma-

trix notation. X is an N � T matrix, with the i-th

omponent x

i

(t) of the sensor signal in row i, S is an

M � T matrix with the signal s

j

(t) in row j, and �

is a K � T matrix with basis funtion '

k

(t) in row k.

Equations (1) and (2) then take the following simple

form

X = AS + � (3)

S = C� (4)

Combining them, we get the following when the noise

is small

X � AC�

Our goal therefore an be formulated as follows:

Given the sensor signal matrix X and

the ditionary �, �nd a mixing matrix

A and matrix of oeÆients C suh that

X � AC� and C is as sparse as possible.

2. PROBABILISTIC FRAMEWORK

In order to derive a maximum a posteriori solution, we

onsider the blind soure separation problem in a prob-

abilisti framework [6, 7℄. Suppose that the oeÆients

C

ik

in soure deomposition (4) are statistially inde-

pendent random variables with a probability density

funtion (pdf) of an exponential type

p

i

(C

ik

) / exp��

i

h(C

ik

) (5)



This kind of distribution is widely used for modeling

sparsity [3, 5℄. A reasonable hoie of h() may be

h() = jj

1=

 � 1 (6)

or a smooth approximation thereof. Here we will use a

family of onvex smooth approximations to the abso-

lute value

h

1

() = jj � log(1 + jj) (7)

h

�

() = �h

1

(=�) (8)

with � a proximity parameter: h

�

()! jj as �! 0

+

.

We also suppose a priori that the mixing matrix

A is uniformly distributed over the range of interest,

and that the noise �(t) in (3) is a spatially and tem-

porally unorrelated Gaussian proess

1

with zero mean

and variane �

2

.

2.1. Maximum a posteriori approah

We wish to maximize the posterior probability

max

A;C

P (A;C j X) / max

A;C

P (X j A;C)P (A)P (C) (9)

where P (X j A;C) is the onditional probability of

observing X given A and C. Taking into aount (3),

(4), and the white Gaussian noise, we get

P (X j A;C) /

Y

i;t

exp�

(X

it

� (AC�)

it

)

2

2�

2

(10)

By the statistial independene of the oeÆients C

jk

and (5), the prior pdf of C is

P (C) /

Y

j;k

exp(��

j

h(C

jk

)) (11)

If the prior pdf P (A) is uniform, it an be dropped

2

from (9). In this way we are left with the problem

max

A;C

P (X j A;C)P (C): (12)

By substituting (10) and (11) into (12), taking the log-

arithm, and inverting the sign, we obtain the following

optimization problem

min

A;C

1

2�

2

kAC��Xk

2

F

+

X

j;k

�

j

h(C

jk

) (13)

where kAk

F

=

q

P

i;j

A

2

ij

is the Frobenius matrix

norm.

1

The iid noise assumption is for simpliity of exposition and

an be easily removed.

2

Otherwise, if P (A) is some other known funtion, we should

use (9) diretly.

One an onsider this objetive as a generalization

of [5℄ by inorporating the matrix �, or as a general-

ization of [1℄ by inluding the matrix A. One problem

with suh a formulation is that it an lead to the de-

generate solution C = 0 and A =1. We an overome

this diÆulty in various ways. The �rst approah is to

fore eah rowA

i

of the mixing matrix A to be bounded

in norm,

kA

i

k � 1 i = 1; : : : ; N: (14)

The seond way is to restrit the norm of the rows C

j

from below

kC

j

k � 1 j = 1; : : : ;M: (15)

A third way is to reestimate the parameters �

j

based on

the urrent values of C

j

. For example, this an be done

using sampling variane as follows: for a given funtion

h(�) in the distribution (5), express the variane of C

jk

as a funtion f

h

(�). An estimate of � an be obtained

by applying the orresponding inverse funtion to the

sampling variane,

^

�

j

= f

�1

h

(K

�1

X

k

C

2

jk

) (16)

In partiular, when h() = jj, var() = 2�

�2

and

^

�

j

=

2

q

K

�1

P

k

C

2

jk

(17)

Substituting h(�) and

^

� into (13), we obtain

min

A;C

1

2�

2

kAC��Xk

2

F

+

X

j

2

P

k

jC

jk

j

q

K

�1

P

k

C

2

jk

(18)

This objetive funtion is invariant to a resaling of

the rows of C ombined with a orresponding inverse

resaling of the olumns of A.

2.2. Experiment: more soures than mixtures

This experiment demonstrates that soures whih have

very sparse representations an be separated almost

perfetly, even when they are orrelated and the num-

ber of samples is small.

We used the standard wavelet paket ditionary

with the basi wavelet symmlet-8. When the signal

length is 64 samples, this ditionary onsists of 448

atoms i.e. it is overomplete by a fator of seven. Ex-

amples of atoms and their images in the time-frequeny

phase plane [8, 2℄ are shown in Figure 1. We used the

ATOMIZER [9℄ and WAVELAB [10℄ MATLAB pak-

ages for fast multipliation by � and �

T

. We reated
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Figure 1: Examples of atoms: time-frequeny phase

plane (left) and time plot (right.)
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Figure 2: Soures, mixtures and reonstruted soures,

in both time-frequeny phase plane (left) and time do-

main (right).

three very sparse soures (Figure 2, top), eah om-

posed of only two or three atoms. The �rst two soures

have signi�ant ross-orrelation, equal to 0.34, whih

makes separation diÆult for onventional methods.

Two syntheti sensor signals (Figure 2, enter) were

obtained as a linear mixture of the soures. In order to

measure the auray of the separation, we normalized

the original soures with kS

j

k

2

= 1, and the estimated

soures with k

e

S

j

k

2

= 1. The error was then omputed

as

Error =

k

e

S

j

� S

j

k

2

kS

j

k

2

� 100% (19)

We tested two methods with this data. The �rst

method used the objetive funtion (13) and the on-

straints (15), while the seond method used the obje-

tive funtion (18). As a tool for onstrained optimiza-

tion we used the PBM method [11℄. Unonstrained op-

timization was produed by the method of onjugate

gradients using the TOMLAB pakage [12℄. The same

tool was used for internal unonstrained optimization

in PBM.

In all the ases we used h

�

(�) de�ned by (7) and

(8), with the parameter � = 0:01. Another parameter

�

2

= 0:0001. The resulting errors of the soure esti-

mates were 0.09% and 0.02% by the �rst and the seond

method respetively. The estimated soures are shown

in the bottom three traes of Figure 2. They are visu-

ally indistinguishable from the original soures, shown

in top three traes of Figure 2.

It is important to note the omputational diÆul-

ties of this approah. First, the objetive funtions

seem to have multiple loal minima. For this reason, re-

liable onvergene was ahieved only when the searh-

started randomly within 10%{20% distane from atual

solution (in order to get suh an initial guess, one an

use a lustering-type algorithm, as in [13℄).

Seond, the method of onjugate gradients requires

a few thousand iterations to onverge, whih takes

about 5 min at Pentium 300 MHz proessor even for

this very small problem

3

. In the remaning part of the

paper we present few other approahes, whih help to

stabilize and aelerate optimization.

3. EQUAL NUMBER OF SOURCES AND

SENSORS: MORE ROBUST

FORMULATIONS

The main diÆulty in a maximization problem like (13)

is the bilinear term AC�, whih destroys the onvexity

of the objetive funtion and makes onvergene unsta-

ble when optimization starts far from the solution. In

this setion we onsider more robust formulations for

the ase when the number of sensors is equal to the

number of soures, N = M , and the mixing matrix is

invertible W = A

�1

.

When the noise is small and the matrix A is far

from singular, WX gives a reasonable estimate of the

soure signals S. Taking into aount (4), we obtain

a least square term kC� �WXk

2

F

, so the separation

objetive may be written

min

W;C

1

2

kC��WXk

2

F

+ �

X

j;k

�

j

h(C

jk

) (20)

We also need to add a onstraint whih enfores the

non-singularity of W . For example, we an restrit

from below its minimal singular value r

min

(W ):

r

min

(W ) � 1 (21)

It an be shown, that in the noiseless ase, � � 0,

the problem (20){(21) is equivalent to the maximum a

3

Our preliminary experiments with other algorithms (like

trunated Newton method) give a hope to redue this timing

by an order of magnitude or more.
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Figure 3: Perent relative error of separation of the

arti�ial sparse soures reovered by (1) JADE, (2) Fast

ICA, (3) Bell-Sejnowski Infomax, (4) Equation 22.

posteriori formulation (13) with the onstraint kAk

2

�

1: Another possibility for ensuring the non-singularity

of W is to subtrat K log j detW j from the objetive

min

W;C

�K log j detW j+

1

2

kC��WXk

2

F

+�

X

j;k

�

j

h(C

jk

)

(22)

When the noise is zero and � is the identity matrix, we

an substitute C =WX and obtain the Bell-Sejnowski

Infomax objetive [14℄

min

W

�K log j detW j+

X

j;k

�

j

h((WX)

jk

) (23)

Experiment: equal numbers of soures and sen-

sors

We reated two sparse soures with strong ross-

orrelation of 0.52. Separation, produed by mini-

mization of the objetive funtion (22), gave an error

of 0.23%. Robust onvergense was ahieved when we

started from random uniformely distributed points in

C and W .

For omparison we tested the JADE [15, 16℄, Fas-

tICA [17, 18℄ and Bell-Sejnowski Infomax [14, 19℄ al-

gorithms on the same signals. All three odes were ob-

tained from the refereed websites and were used with

default setting of all parameters. The resulting relative

errors (Figure 3) on�rm the signi�ant superiority of

the sparse deomposition approah.

This still takes a few thousands onjugate gradi-

ent steps to onverge (about 5 min on a Pentium 300

MHz). For omparision, JADE, FastICA and Infomax

take only few seonds. Below we will onsider some

options for aeleration.

4. FAST SOLUTION IN

NON-OVERCOMPLETE DICTIONARIES

In important appliations, the sensor signals may have

hundreds of hannels and hundreds of thousands of

samples. This may make separation omputationally

diÆult. Here we present an approah whih ompro-

mises between statistial and omputational eÆieny.

In our experiene this approah provides high quality

of separation in reasonable time.

Suppose that the ditionary is \omplete," i.e. it

forms a basis in the spae of disrete signals. This

means that the matrix � is square and non-singular.

As examples of suh a ditionary one an think of

the Fourier basis, Gabor basis, various wavelet-related

bases, et. We an also obtain an \optimal" ditionary

by learning from given family of signals [3, 4, 5℄.

Let us denote the dual basis

	 = �

�1

(24)

and suppose that oeÆients of deomposition of the

soures

C = S	 (25)

are sparse and statistially independent. This assump-

tion is reasonable for properly hosen ditionaries, al-

though of ourse we would lose the advantages of over-

ompleteness.

Let Y be the deomposition of the sensor signals

Y = X	 (26)

Multiplying both sides of (3) by 	 from the right and

taking into aount (25) and (26), we obtain

Y = AC + � ; (27)

where � is deomposition of the noise

� = �	 : (28)

Here we onsider an \easy" situation, when � is a white

noise, that requires orthogonality of 	. We an see that

all the objetive funtions from the previous setions

remain valid if we remove from them � (substituting

instead the identity matrix) and replae the sensor sig-

nal X by its deomposition Y . For example, maximum

a posteriori objetives (13) and (18) are transformed

into

min

A;C

1

2�

2

kAC � Y k

2

F

+

X

j;k

�

j

h(C

jk

) (29)

and

min

A;C

1

2�

2

kAC � Y k

2

F

+

X

j

2

P

k

jC

jk

j

q

K

�1

P

k

C

2

jk

(30)



The objetive (22) beomes

min

W;C

�K log j detW j+

1

2

kC �WY k

2

F

+ �

X

j;k

�

j

h(C

jk

)

(31)

In this ase we an further assume that the noise is zero.

substitute C = WY and obtain the Bell-Sejnowski In-

fomax objetive [14℄

min

W

�K log j detW j+

X

j;k

�

j

h((WY )

jk

) (32)

Also other known methods (for example, [20, 3℄), whih

normally assume sparsity of soure signals, may be

diretly applied to the deomposition Y of the sen-

sor signals. This may be more eÆient than the tra-

ditional approah, and the reason is obvious: typi-

ally, a properly hosen deomposition gives signi�-

antly higher sparsity than the raw signals had orig-

inally. Also, statistial independene of the oeÆients

is a more reasonable assumption than statistial inde-

pendene of the raw signal samples.

Experiment: musial sounds

In our experiments we arti�ially mixed seven 5-seond

fragments of musial sound reordings taken from om-

merial digital audio CDs. Eah of them inluded 40k

samples after down-sampling by a fator of 5.

The easiest way to perform sparse deomposition

of suh soures is to ompute a spetrogram, the oef-

�ients of a time-windowed disrete Fourier transform.

(We used the funtion SPECGRAM from the MAT-

LAB signal proessing toolbox with a time window of

1024 samples.) The sparsity of the spetrogram oeÆ-

ients (the histogram in Figure 4, right) is muh higher

then the sparsity of the original signal (Figure 4, left)

In this ase Y (26) is a real matrix, with sepa-

rate entries for the real and imaginary omponents

of eah spetrogram oeÆient of the sensor signals

X . We used the objetive funtion (32) with �

j

= 1

and h

�

(�) de�ned by (7),(8) with the parameter � =

10

�4

. Unonstrained minimization was performed by

a BFGS Quasi-Newton algorithm (MATLAB funtion

FMINU.)

This algorithm separated the soures with a relative

error of 0.67% for the least well separated soure (error

omputed aording to (19).) We also applied the Bell-

Sejnowski Infomax algorithm [14℄ implemented in [19℄

to the spetrogram oeÆients Y of the sensor signals.

Separation errors were slightly larger: 0.9%, but the

omputing time was improved (from 30 min for BFGS

to 5 min for Infomax).
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Figure 4: Histogram of sound soure values (left) and

spetrogram oeÆients (right), shown with linear y-

sale (top), square root y-sale (enter) and logarithmi

y-sale (bottom).
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Figure 5: Perent relative error of separation of seven

musial soures. reovered by (1) JADE, (2) Fast ICA,

(3) Bell-Sejnowski Infomax, (4) Infomax, applied to the

spetrogram oeÆients, (5) BFGS minimization of the

objetive (32) with the spetrogram oeÆients.

For omparison we tested JADE [15, 16℄, FastIa

[17, 18℄ and Infomax algorithms on the raw sensor sig-

nals. Resulting relative errors (Figure 5) on�rm the

signi�ant (by a fator of more than 10) superiority of

the sparse deomposition approah.

The method desribed in this setion, that ombines

spetrogram transformations with the Infomax algo-

rithm, is inluded by Sott Makeig into the ICA/EEG

toolbox [19℄.

5. CONCLUSIONS

We showed that the use of sparse deomposition in

a proper signal ditionary provides high-quality blind

soure separation. The maximum a posteriori frame-

work gives the most general approah, whih inludes

the situation of more soures than sensors. Computa-

tionally more robust solutions an be found in the ase

of an equal number of soures and sensors. We an also

extrat the soures sequentially using quadrati pro-

gramming with non-onvex quadrati onstraints. Fi-

nally, muh faster solution may be obtained using non-

overomplete ditionaries. Our experiments with arti�-



ial signals and digitally mixed musial sounds demon-

strate a high quality of soure separation, ompared to

other known tehniques.
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