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Abstract. We describe a new localisation and source separation algo-
rithm which is based upon the accurate construction of time-frequency
spatial signatures. We present a technique for constructing time-frequency
spatial signatures with the required accuracy. This algorithm for multi-
channel source separation and localisation allows arbitrary placement of
microphones yet achieves good performance. We demonstrate the efficacy
of the technique using source location estimates and compare estimated
time-frequency masks with the ideal 0 dB mask.

1 Introduction

Speech is sparse in the time-frequency (T-F) domain, a property which has
been exploited for Blind Source Separation (BSS), [4]. Related assumptions,
namely the log-max [5] or Windowed Disjoint Orthogonality (WDO) assumption
[8] in various transform domains are exploited for decompositions of financial
data [6] and images [9]. Localisation can be performed in the time or frequency
domain when the technique relies on a sparse representation in a dictionary
of pre-computed transfer functions [1,2]. We discuss the challenges involved in
constructing a T-F dictionary of spatial signatures for source localisation in
T-F in Section 3. A typical office contains recording devices, such as mobile
phones, MP3 players, PDAs, hearing aids, and computers all equipped with
(largely unused) microphones. Consider a dedicated teleconferencing room, with
an arbitrary number of inexpensive microphones. The source location, detected
using this sensor array, is used to automatically identify the speaker or indicate
the position of the speaker in the room. Our goal is to perform localisation and
separation using multiple observations from arbitrarily placed sensors. The T-F
domain lends itself to this problem as speech typically has increased WDO [8]
and sparsity [7] in the T-F domain than in the time domain or frequency domain.

In an anechoic environment, a continuous time source signal sj(t) is attenuated
and delayed as it propagates the direct path to sensor xi. The attenuation and
delay effect on the jth source received at the ith sensor is (aji, δji), consequently
ŝji(t) = ajisj(t−δji). I mixture signals are observed, xi(t), at physical locations
xi, where hji(t) is the continuous time transfer function from source to sensor.
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The source is constrained to lie at one of P arbitrarily placed grid points. We
consider a synthetic scenario where the sensors are placed arbitrarily in a 2m×
2m× 2m room in Section 4 and observe the signals,

xi(t) =
J∑

j=1

ŝji(t) = h1i(t) � s1(t) + h2i(t) � s2(t) + · · ·+ hJi(t) � sJ(t). (1)

2 Fractional Delay of Discrete Signals

A continuous time signal s(t) is denoted by s[n] = s(nT ) in the discrete time
domain where T is the sampling period and n = 0, 1, 2, . . .. A continuous time
signal delayed by δ ∈ R seconds is denoted by s(t − δ). A discrete signal, s[n],
can be delayed by an integer, d, number of samples giving s[n−d] or by rounding
down, �d�, if d = δ/T is non-integer yielding s[n − �d�]. A source signal s(t) is
delayed by δ seconds propagating to a sensor xi in an ideal anechoic telecon-
ferencing room. Constraining the source physical locations such that the signals
can only be delayed by an integer number of samples in the discrete time domain
when propagating to each sensor limits the possible source locations. Alterna-
tively, rounding down (denoted by �d�) introduces error. Although sources are
constrained to lie on a grid, this grid can be refined and a space of interest more
densely populated to locate arbitrarily placed sources. Non-integer sample delay,

sδ[n] = s(nT − δ), (2)

can be computed using sinc interpolation, given that the signal is bandlimited
and sampled at a sufficiently high sampling rate,

sδ[n] =
∞∑

n=−∞
s[n]sinc(nT − δ). (3)

In practice a finite length approximation of the sinc function leads to error
in the estimate of sδ[n]. A non-integer sample delay of a bandlimited signal
sampled above the Nyquist rate can also be determined by multiplying the Dis-
crete Fourier Transform of s[n], DFT{s[n]} = S[k] =

∑N−1
n=0 s[n]W kn where k =

0, 1, . . . , N − 1 and W = e−j 2π
N , by a linear phase term W kd. This corresponds

to a circular shift of the signal by d = δ/T ∈ R samples. We define the zero-
padding function ZP (b, s[n], e) which appends b and e zeros to the beginning
and end of the signal respectively. The inverse-pad function IP (b, s[n], e) re-
moves b and e samples from the beginning and end of the signal. Zero-padding
by �d�, where �·� is the ceiling function, taking the DFT, multiplying by the
linear phase term, taking the IDFT and inverse-padding gives the desired re-
sult. Defining IDFT{S[k]} = 1

N

∑N−1
k=0 S[k]W−kn to be the inverse DFT, the

frequency domain method in (Eqn. 4) is the benchmark method we shall use for
the remainder of this work.

sδ[n] = IP
(�d�, IDFT{DFT{ZP(�d�, s[n], 0)}W kd}, �d�) (4)
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The contributions of this paper are the formulation of the T-F spatial signa-
tures problem, the construction of a practical solution via Algorithm 1 and the
synchronized STFT, and a demonstration of the efficacy of the technique by
implementing a source localisation algorithm in the discrete T-F domain.

3 Time-Frequency Spatial Signatures

S[k, m] is the Short-Time-Fourier-Transform (STFT) of s[n],

STFT{s[n]} = S[k, m] =
N−1−mR∑

n=mR

s[n]wa[n−mR]W k(n−mR) (5)

positioned at sample mR where wa[n] is the analysis window function and R
is the number of window hop-size samples. [k,m] are the discrete frequency and
time indices respectively. N is the FFT size. The STFT is inverted using the
synthesis window ws[n] and Over-Lap and Add (OLA) re-synthesis. A discrete
source signal sj [n] is delayed by d ∈ R samples (neglecting attenuation effects)
as it propagates to sensor xi yielding sδ

j [n].

Problem. Construct a T-F spatial signature Hδ[k, m] so that,

Sδ
j [k, m] = S0

j [k, m]Hδ[k, m] for j = 1, . . . , J and ∀|δ|/T < Δ. (6)

Sδ
j [k, m] and S0

j [k, m] are the synchronized STFT (sSTFT) of sδ
j [n] and sj [n]

respectively. We define the sSTFT so that the analysis window is centered on
the same portion of the signal for the signal delayed by |δ|/T < Δ samples,
and the windowed segment of sδ[n] is a circular shift of the windowed seg-
ment of s[n]. Δ is a user defined upper-bound on the range of delays under
consideration specified by the maximum expected propagation distance.

The sSTFT is an alternative T-F analysis to the typical STFT method in (Eq. 5).
It has the property that if a single source is active in T-F bin [k, m], the T-F
representation of the source at each xi is calculated such that wa[n] is aligned
with the received delayed source sδ

j [n] ∀|δ|/T < Δ.

Definition 1. For a delay |δ|/T < N/4 samples, we define the sSTFT of sδ
j [n],

Sδ
j [k, m] =

N−1−mR∑

n=mR

sδ
j [n]wδ

az [n−mR]W k(n−mR), (7)

where the window hop-size is R = N/4 samples. We define analysis and synthesis
windows which are non-zero for N/2 samples and zero-padded by N/2 zeros,

waz [n] = ZP (N/4, wa[n], N/4) , wsz [n] = ZP (N/4, ws[n], N/4) (8)
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Fig. 1. The STFT (Eq.5) using wa[n] (which is not zero-padded) does not have the
circular shift property in col. 1. The sSTFT (Eq.7) using waz[n] (which is zero-padded)
allows the analysis to be synchronized with delays up to N/4 samples in col. 2.

to form a pair of windows of length N . Firstly, waz[n] allows the signal s[n] to
be shifted by |δ|/T < N/4 samples such that the circular shift property still
holds for each local windowed version of s[n]. Secondly, waz [n], is aligned with
the source signal by delaying it by d = δ/T samples so that the same samples of
s[n] and sδ[n] are multiplied by the same samples of wδ

az[n]. We define,

wδ
az [n] = IDFT{DFT{waz}[n]W kd} and wδ

sz [n] = IDFT{DFT{wsz}W kd} (9)

Fig. 1 illustrates the difference between the STFT and the sSTFT using a signal,
s[n], of length 32 samples in column 1 row 1. We index each subplot using the
figure number and then row and column index in parenthesis, e.g. Fig. 1(1,1).
Samples 9-24 are analyzed using a 16-point FFT and 16-point Hamming window.
The Hamming window is superimposed on the signal in Fig. 1(2,1). Samples 9-24
supported by the window, wa[n], have linear stalks. Samples 1-8 and 25-32 are
denoted by dotted stalks. s[n] is delayed by 3 samples in Fig. 1(3,1). Different
portions of the signal s[n] and its delayed counter-part are analyzed in Fig. 1(2,1)
and Fig. 1(3,1) using the STFT. Samples common to both windowed signals are
scaled differently due to the shifted version of the signal in Fig. 1(2,1) and
Fig. 1(3,1) relative to the window. The Fourier transform circular shift property
does not hold for the local windowed signal Fig. 1(2,1) and its delayed windowed
version Fig. 1(3,1). Analyzing s[n] as specified by (Eq.7) using the zero-padded
window w0

az [n] (Eq. 8) with δ = 0 in Fig. 1(2,2) and analyzing sδ[n] with wδ
az [n]

(Eq. 9) in Fig. 1(3,2) preserves the Fourier transform circular shift property.
w0

az [n] is pre-zero-padded and post-zero-padded by N/4 samples. w0
az [n] is non-

zero for N/2 samples. A circular shift of w0
az[n] by d < N/4 samples yielding,
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wδ[n], times sδ[n] results in a windowed signal which is a circular shift of the
original windowed signal in Fig.1(2,2). This facilitates the construction of T-F
spatial signatures using the Fourier transform circular shift property. Due to the
analysis window alignment of the sSTFT, the re-synthesis is not dependent on
the analyzed signal s[n]. The synthesis window wδ

sz [n] corresponding to wδ
az [n] is

used to re-synthesize any signal accurately using OLA. Synchronized T-F spatial
signatures independent of the signal to be delayed and unbiased by wrap-around
and windowing can be estimated using Alg. 1 and sSTFT.

Algorithm 1. Synchronized T-F Spatial Signatures
s[n] delayed by δ/T < N

4 samples, resulting in sδ[n], is calculated by element-
wise multiplication with the matrix Hδ[k, m] in discrete T-F given the s[n]
is analyzed using (Eq. 7) yielding S0[k, m] using the analysis window w0

az in
(Eq. 8), e.g. Sδ[k, m] = S0[k, m]Hδ[k, m]. Using the sample indices q, g

Hδ[k, m] =

∑Q−1−mN
4

q= mN
4

sinc(qT − mN
4 − δ)wδ

az [q − mN
4 ]W k(q−mN

4 )

∑G−1−mN
4

g= mN
4

sinc(gT − mN
4 )waz [g − mN

4 ]W k(g−mN
4 )

. (10)

We form x[k, m] = [X1[k, m], . . . , Xi[k, m], . . . , XI [k, m]]T ∈ C
I×1 a vector of the

observations at each sensor for each T-F point [k, m] using sSTFT. We construct
a T-F spatial signatures matrix for each [k, m], D[k, m] ∈ C

I×P , using Alg. 1
and attenuating each Hpi[k, m] using aji. D[k, m] gives the transfer function,
Hpi[k, m], for every location, p, in the grid relative to each sensor, xi, for [k, m].

D[k, m] =

→
Se

ns
or

i
←

←−Location p−→⎛

⎜⎜⎜⎜⎜⎜⎝

H11[k, m] . . . Hp1[k, m] . . . HP1[k, m]
... . . .

... . . .
...

H1i[k, m] . . . Hpi[k, m] . . . HPi[k, m]
... . . .

... . . .
...

H1I [k, m] . . . HpI [k, m] . . . HPI [k, m]

⎞

⎟⎟⎟⎟⎟⎟⎠
(11)

The J sources [s1, . . . sj . . . , sJ ] are constrained to lie on a subset of the P grid
points. We locate a source by estimating the vector c[k, m] ∈ C

P×1 which ex-
plains the sensor observations in the most parsimonious manner given D[k, m].

x[k, m] = D[k, m]c[k, m]. (12)

4 Source Localisation and Separation Simulations

We solve each subsystem [k, m] in (Eq. 12) independently. This approach lends
itself to real-time parallel implementation on dedicated processors. Assuming
WDO in T-F, a single source is active in [k, m]. The element of the estimated
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c[k, m] with the most energy, for example p = 25 in Fig. 2(b), indicates the
position of the source. For example in Fig. 2(b) a mixed L1 + λL2

2 objective
function prejudiced in favor of the sparsity constraint, L1-norm yields a solution
with significant energy at one grid location p = 25 in comparison with a solution
with an emphasis on the L2

2-norm. The weight λ is a data dependent heuristic.
Masking the mixture at xi, Xi[k, m], using cp[k, m] as an indicator for each [k, m]
for each p of interest, separates the source at p. We consider a mixed objective

min
c

1
2

P∑

i=1

|cp|
︸ ︷︷ ︸

E1

+λ ||Dc− x||22︸ ︷︷ ︸
E2

, and define D̃ =
(

Re{D̂} −Im{D̂}
Im{D̂} Re{D̂}

)
. (13)

We use an iteratively re-weighted least squares approach in the spirit of [3],

min
c

Ê(c) = Ê1 + λE2, Ê1 ≡ 1
2

P∑

p=1

αk
p|ck

p|2, α ∈ R
P×1 and Λ = diag (α). (14)

Using a modified objective (Eq. 14) we solve ∂Ê(c)
∂ck = 0 for ck, where k denotes

the iteration index and (·)H denotes the conjugate transpose operation.
(
Λ + λD̃

T
D̃

) (
Re{c}
Im{c}

)
= λD̃

T
(

Re{x}
Im{x}

)
= (Λ + λDHD)c = λDHx(15)

Solving (15) iteratively and setting αk+1
p = 1/|ck

p| yields a fixed point solution.
In the first experiment we show that construction of accurate T-F spatial sig-

natures, Hji(k, m), is crucial for a sparse solution. Wrap-around and windowing
effects inherent in unsynchronized analysis using STFT of (Eq. 5) introduce er-
ror and occlude the true solution. We estimate Sδ[k, m] using (Eq. 7) to analyze
s[n]. We delay s[n] in T-F using Alg. 1 and re-synthesize using OLA with wδ

sz [n]
and hop-size of N/4 (method 1). We compare method 1 with a STFT approach
(method 2) e.g., s[n − d] ≈ ISTFT(STFT(s[n], wa, N, N/2)W kd, ws, N, N/2).
Method 2 performs analysis of s[n] using the STFT (Eq. 5) with a window wa[n]
of N samples and hop-size N/2 (as in Fig. 1 column 1). A linear phase term W kd

shifts each frame of the signal in T-F. The resulting signal is re-synthesized using
the inverse STFT with a synthesis window ws[n] of length N and overlap N/2
using OLA re-synthesis. SNR is defined as 20∗ log(||sδ

B [n]||2)/||sδ
B[n]−sδ

est[n]||2),
where sδ

est[n] is the estimate of the delayed signal and the benchmark, sδ
B[n], is

computed using (Eq. 4). We analyze speech from the TIMIT database, sam-
pled at 16kHz, with the parameters N = 2048 and R = N/4 and R = N/2
for method 1 and 2 respectively. Fig. 2(a) illustrates the window wrap-around
and windowing effects on the delayed source using the sSTFT (method 1) and
STFT (method 2). The sSTFT method exhibits sub-sample dips in SNR due
to the numerical instability of the truncated delayed sinc function yet degrades
gracefully as a function of delay and achieves an estimate > 40dB when delayed
by 511 samples. The SNR of method 2 in Fig. 2(a) decreases rapidly as a func-
tion of delay in samples due to windowing effects. These inaccurate T-F spatial
signatures are unsuitable for localization via sparse representations.
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Fig. 2. Fig. 2(a) illustrates the effects of window misalignment and wrap-around using
the STFT compared to sSTFT analysis. Row 2 Fig. 2(b) shows that a sparse solution
reveals the source location (position 25) compared to a more dense solution (Row 1).

Table 1. Average Localisation and Separation Performance

Source PSR WDO WDO (0dB) Loc %

p 3 5 6 3 5 6 3 5 6 3 5 6

s1 25 0.89 0.60 0.86 0.88 0.60 0.83 0.92 0.87 0.85 25.0 8.0 6.3

s2 97 0.90 0.69 0.67 0.89 0.68 0.65 0.92 0.82 0.75 47.0 14.0 11.0

s3 105 0.80 0.58 0.67 0.79 0.57 0.65 0.87 0.79 0.69 17.0 5.0 5.0

s4 5 − 0.86 0.70 − 0.85 0.68 − 0.79 0.73 − 24.0 3.0

s5 62 − 0.94 0.90 − 0.92 0.89 − 0.90 0.86 − 43.0 54.0

s6 112 − − 0.77 − − 0.74 − − 0.78 − − 18.0

In the second experiment we perform source localisation, using the sSTFT
approach, in a synthetic 2m × 2m × 2m room with grid points every 50cm.
We tune (Eq.13) over a range of λ. A sparse solution decreases the Euclidean
distance between our signal estimate and the original signal as the trade-off
between the reconstruction penalty E2 and sparsity penalty E1 is adjusted in
(Eq.13). Mixtures of 1 to 6 speakers are generated from the TIMIT database
by assigning them randomly to grid-points {25, 97, 105, 5, 62, 112}. We perform
multiple experiments with different initial conditions to test the accuracy of the
localisation experiment. We use 10 microphones in each experiment. We choose
candidate locations—based on the signal power at each location—by analyzing a
subset of the T-F points with the optimal analysis window for each grid point p,
e.g. wp

az . Localisation and separation is performed using these optimal windows.
The mean results for the 3, 5, 6 speaker cases are tabulated in Table 1. The T-F
mask metrics PSR and WDO introduced in [8] are used for comparison with the
0dB ideal mask defined in [8] to gauge separation performance. Our technique
achieves performance comparable with the 0dB mask. A significant percentage
of the signal energy is located at the correct source positions.

With regard to existing T-F separation algorithms, relying on relative mea-
surements between multiple observations of the mixture could introduce bias if
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the analysis is unsynchronized using STFT (Eq. 5). The DUET algorithm [8]
estimates relative attenuations and delays between two closely spaced sensors
using the ratios of the STFT of the observations at sensor x1 and x2. A bias has
been noted in attenuation and delay estimates in [8] where the delay between 2
sensors ranges from −5 to 5 samples and attenuation from −0.15 to 0.15. It is
clear from Fig. 1 that using (Eq. 5) to compute X1[k, m] and X2[k, m] and taking
the ratio of these two channels in T-F, introduces error as the mixture at x2 is
shifted relative to the window and the mixture x1[n]. The circular shift property
is not satisfied. The delay estimate is only approximate δ[k, m] ≈ − 1

2πk∠X2[k,m]
X1[k,m] .

The samples of the windowed signal x1[n] common to the windowed x2[n] are
scaled differently due to window misalignment for analysis and so the relative
attenuation α[k, m] ≈ |X2[k,m]

X1[k,m] | is approximate. To conclude, the synchronized
STFT method combined with the algorithm for T-F spatial signature construc-
tion facilitates the implementation of a global signal shift as a circular shift with
in the support of each frame of the analyzed signal. We have presented a sparse
source localisation technique using synthetic experiments to motivate this ap-
proach. Incorporating sSTFT into a existing techniques, such as DUET and its
extensions will lead to gains in accuracy of the mixing parameter estimation. We
will extend this approach to the echoic case in future work.
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