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ABSTRACT

Many apparently difficult problems can be solved by re-
duction to linear programming. Such problems are often
subproblems within larger systems. When gradient opti-
misation of the entire larger system is desired, it is neces-
sary to propagate gradients through the internally-invoked
LP solver. For instance, when an intermediate quantityz

is the solution to a linear program involving constraint ma-
trix A, a vector of sensitivitiesdE/dz will induce sensitiv-
ities dE/dA. Here we show how these can be efficiently
calculated, when they exist. This allows algorithmic differ-
entiation to be applied to algorithms that invoke linear pro-
gramming solvers as subroutines, as is common when using
sparse representations in signal processing. Here we apply
it to gradient optimisation of overcomplete dictionaries for
maximally sparse representations of a speech corpus. The
dictionaries are employed in a single-channel speech sepa-
ration task, leading to 5 dB and 8 dB target-to-interference
ratio improvements for same-gender and opposite-gender
mixtures, respectively. Furthermore, the dictionaries are
successfully applied to a speaker identification task.

1. INTRODUCTION

Linear programming solvers (LP) are often used as subrou-
tines within larger systems, in both operations research and
machine learning [1, 2]. One very simple example of this is
in sparse signal processing, where it is common to represent
a vector as sparsely as possible in an overcomplete basis;
this representation can be found using LP, and the sparse
representation is then used in further processing [3–9].

To date, it has not been practical to perform end-to-end
gradient optimisation of algorithms of this sort. This is due
to the difficulty of propagating intermediate gradients (ad-
joints) through the LP solver. We show below how these
adjoint calculations can be done: how a sensitivity of the

∗Supported by Science Foundation Ireland grant 00/PI.1/C067 and the
Higher Education Authority of Ireland.

†Thanks to Oticon Fonden for financial support for this work.

output can be manipulated to give a sensitivity of the in-
puts. As usual in Automatic Differentiation (AD), these do
not require much more computation than the original primal
LP calculation—in fact, rather unusually, here they may re-
quire considerably less.

We first introduce our notational conventions for LP, and
then give a highly condensed introduction to, and notation
for, AD. We proceed to derive AD transformations for a
simpler subroutine than LP: a linear equation solver. (This
novel derivation is of independent interest, as linear equa-
tions are often constructed and solved within larger algo-
rithms.) Armed with a general AD transformation for lin-
ear equation solvers along with suitable notation, we find
the AD transformations for linear program solvers simple
to derive. This is applied mechanically to yield AD rules
for a linearly-constrainedL1-optimiser.

The problem of finding an overcomplete signal dictio-
nary tuned to a given stimulus ensemble, so that signals
drawn from that ensemble will have sparse representations
in the constructed dictionary, has received increasing atten-
tion, due to applications in both neuroscience and in the
construction of efficient practical codes [10]. Here we de-
rive a gradient method for such an optimisation, and apply
it to learn a sparse representation of speech.

Single-channel speech separation, where the objective is
to estimate the speech sources of the mixture, is a relevant
task in hearing aids, as a speech recognition pre-processor,
and in other applications which might benefit from better
noise reduction. For this reason, there has been a flurry
of interest in the problem [9, 11–17]. We encode the au-
dio mixtures in the basis functions of the combined person-
alised dictionaries, which were adapted using the devised
gradient method. The sparse code separates the signal into
its sources, and reconstruction follows. Furthermore, we
show that the dictionaries are truly personal, meaning that
a given dictionary provides the sparsest fit for the particu-
lar speaker, which it was adapted to. Hence, we are able to
correctly classify speech signals to their speaker.



2. BACKGROUND AND NOTATION

We develop a convenient notation while briefly reviewing
the essentials of linear programming (LP) and algorithmic
differentiation (AD).

2.1. Linear Programming

In order to develop a notation for LP, consider the general
LP problem

arg min
z

w⊤z s.t.Az ≤ a andBz = b (1)

We will denote the linear program solverlp, and write the
solution asz = lp(w,A,a,B,b). It is important to see
that lp(·) can be regarded as either a mathematical function
which maps LP problems to their solutions, or as a computer
program which actually solves LP problems. Our notation
deliberately does not distinguish between these two closely
related notions.

Assuming feasibility, boundedness, and uniqueness, the
solution to this LP problem will satisfy a set of linear equal-
ities consisting of a subset of the constraints: theactivecon-
straints [18–20]. An LP solver calculates two pieces of in-
formation: the solution itself, and the identity of the active
constraints. We will find it convenient to refer to the ac-
tive constraints by defining some very sparse matrices that
extract the active constraints from the constraint matrices.
Let α1 < · · · < αn be the indices of the rows ofA corre-
sponding to active constraints, andβ1 < · · · < βm index
the active rows ofB. Without loss of generality, we assume
that the total number of active constraints is equal the di-
mensionality of the solution,n + m = dim z. We letPα

be a matrix withn rows, where thei-th row is all zeros ex-
cept for a one in theαi-th column, andPβ similarly havem
rows, with itsi-th row all zeros except for a one in theβi-th
column. SoPαA andPβB hold the active rows ofA andB,
respectively. These can be combined into a single matrix,

P ≡

[

Pα 0

0 Pβ

]

Using these definitions, the solutionz to (1), which pre-
sumably is already available having been computed by the
algorithm that identified the active constraints, must be the
unique solution of the system of linear constraints

P

[

A

B

]

z = P

[

a

b

]

or

lp(w,A,a,B,b) = lq(P

[

A

B

]

,P

[

a

b

]

) (2)

wherelq is a routine that efficiently solves a system of lin-
ear equations,lq(M,m) = M−1m. For notational con-
venience we suppress the identity of the active constraints

as an output of thelp routine. Instead we assume that it is
available where necessary, so any function with access to
the solutionz found by the LP solver is also assumed to
have access to the correspondingP.

2.2. Algorithmic Differentiation

AD is a process by which a numeric calculation specified
in a computer programming language can be mechanically
transformed so as to calculate derivatives (in the differential
calculus sense) of the function originally calculated [21].
There are two sorts of AD transformations: forward accu-
mulation [22] and reverse accumulation [23]. (A special
case of reverse accumulation AD is referred to as backprop-
agation in the machine learning literature [24].) If the entire
calculation is denotedy = h(x), then forward accumula-
tion AD arises because a perturbationdx/dr induces a per-
turbationdy/dr, and reverse accumulation AD arises be-
cause a gradientdE/dy induces a gradientdE/dx. The Ja-
cobian matrix plays a dominant role in reasoning about this
process. This is the matrixJ whosei, j-th entry isdhi/dxj .

Forward AD calculateśy = Jx́ =
−⇀
h (x, x́), and reverse

AD calculates̀x = J⊤ỳ =
↼−
h (x, ỳ). The difficulty is that,

in high dimensional systems, the matrixJ is too large to
actually calculate. In AD the above matrix-vector products
are found directly and efficiently, without actually calculat-
ing the Jacobian.

The central insight is that calculations can be broken
down into a chained series of assignmentsv := g(u), and
transformed versions of these chained together. The trans-
formed version of the above internal assignment statement
would bev́ := −⇀g (u, ú, v) in forward mode [22], or̀u :=
↼−g (u, v, v̀) in reverse mode [23]. The most interesting prop-
erty of AD, which results from this insight, is that the time
consumed by the adjoint calculations can be the same as that
consumed by the original calculation, up to a small constant
factor. (This naturally assumes that the transformations of
the primitives invoked also obey this property, which is in
general true.)

We will refer to the adjoints of original variables in-
troduced in forward accumulation (perturbations) using a
forward-leaning accentv 7→ v́; to the adjoint variables in-
troduced in the reverse mode transformation (sensitivities)
using a reverse-leaning accentv 7→ v̀; and to the forward-
and reverse-mode transformations of functions using for-
ward and reverse arrows,h 7→

−⇀
h and h 7→

↼−
h . A de-

tailed introduction to AD is beyond the scope of this paper,
but one form appears repeatedly in our derivations. This is
V := AUB whereA andB are constant matrices andU
andV are matrices as well. This transforms toV́ := AÚB

andÙ := A⊤ V̀B⊤.



2.3. AD of a Lin. Eq. Solver

We first derive AD equations for a simple implicit function,
namely a linear equation solver. We consider a subroutine
lq which finds the solutionz of Mz = m, written z =
lq(M,m). This assumes thatM is square and full-rank,
just as a division operationz = x/y assumes thaty 6= 0.
We will derive formulae for both forward mode AD (théz
induced byḾ andḿ) and reverse mode AD (thèM andm̀

induced bỳz).
For forward propagation of perturbations, we will write

ź =
−⇀
lq (M, Ḿ,m, ḿ, z). Because(M + Ḿ)(z + ź) =

m + ḿ which reduces toMź = ḿ − Ḿz, we conclude
that

−⇀
lq (M, Ḿ,m, ḿ, z) = lq(M, ḿ − Ḿz).

Note thatlq is linear in its second argument, where the per-
turbations enter linearly. For reverse propagation of sensi-
tivities, we will write

[

M̀ m̀
]

=
↼−
lq (M,m, z, z̀). (3)

First observe thatz = M−1m and hencèm = M−⊤z̀ so

m̀ = lq(M⊤, z̀).

For the remaining term we start with our previous forward
perturbationḾ 7→ ź, namelýz = −M−1Ḿz, and note that
the reverse must be the transpose of this linear relationship,
M̀ = −M−⊤z̀z⊤, which is the outer product

M̀ = −m̀z⊤.

2.4. AD of Linear Programming

We apply equation (3) followed by some bookkeeping, yields
[

À à

B̀ b̀

]

=
↼−
lp (w,A,a,B,b, z, z̀)

= P⊤
↼−
lq (P

[

A

B

]

,P

[

a

b

]

, z, z̀)

ẁ = 0

Forward accumulation is similar, but is left out for brevity.

2.5. ConstrainedL1 Optimisation

We can find AD equations for linearly constrainedL1-norm
optimisation via reduction to LP. Consider

arg min
c

‖c‖1 s.t.Dc = y.

Although‖c‖1 =
∑

i|ci| is a nonlinear objective function,
a change in parametrisation allows optimisation via LP. We
name the solutionc = L1opt(y,D) where

L1opt(y,D) =
[

I −I
]

lp(1,−I,0,D
[

I −I
]

,y)

in which0 and1 denote column vectors whose elements all
contain the indicated number, and eachI is an appropriately
sized identity matrix. The reverse-mode AD transformation
follows immediately,

↼−−
L1opt(y,D, c, c̀) =

[

D̀ ỳ
]

=

[

0′ I
] ↼−

lp (1,−I,0,D
[

I −I
]

,y, z,

[

I

−I

]

c̀)





I 0

−I 0

0⊤ 1





wherez is the solution of the internal LP problem and0′ is
an appropriately sized matrix of zeros.

3. DICTIONARIES OPTIMISED FOR SPARSITY

A major advantage of the LP differentiation framework, and
more specifically the reverse accumulation of the constrained
L1 norm optimisation, is that it provides directly a learning
rule for learning sparse representation in overcomplete dic-
tionaries.

We assume an overcomplete dictionary in the columns
of D, which is used to encode a signal represented in the
column vectory using the column vector of coefficients
c = L1opt(y,D) where each dictionary element has unit
L2 length. A probabilistic interpretation of the encoding
as a maximum posterior (MAP) estimate naturally follows
from two assumptions: a Laplacian prior p(c), and a noise-
free observation modely = Dc. This gives

c = arg max
c′

p(c′|y,D)

We would like to improveD for a particular distribu-
tion of signals, meaning changeD so as to maximise the
sparseness of the codes assigned. Withy drawn from this
distribution, an ideal dictionary will minimise the average
code length, giving maximally sparse coefficients. We will
updateD so as to minimiseE = 〈‖L1opt(y,D)‖1〉 while
keeping the columns ofD at unit length. This can be re-
garded a special case of Independent Component Analysis
[25], where measures of independence across coefficients
are optimised. We wish to use a gradient method so we cal-
culate∇DEy whereEy = ‖L1opt(y,D)‖1 makingE =
〈Ey〉. Invoking AD,

∇DEy = D̀ =
[

D̀ ỳ
]

[

I

0⊤

]

=
↼−−
L1opt(y,D, c, sign(c))

[

I

0⊤

] (4)

where sign(x) = +1/0/−1 for x positive/zero/negative, and
applies elementwise to vectors.

We are now in a position to perform stochastic gradient
optimisation [26], modified by the inclusion of a normali-
sation step to maintain the columns ofD at unit length and
non-negative.



Fig. 1. A sample of learnt dictionary entries for male (left) and female (right) speech in the Mel spectrum domain. Clearly,
harmonic features emerge from the data but some broad and narrow noise spectra can also be seen. The dictionaries were
initialised toN = 256 delta-like pulses, lengthL = 80 and were adopted fromT = 420 s of speech.

1. Drawy from signal distribution.
2. CalculateEy.
3. Calculate∇DEy by (4).
4. StepD := D − η∇DEy.
5. Set any negative element ofD to zero.
6. Normalise the columnsdi of D to unitL2 norm.
7. Repeat to convergence ofD.

This procedure can be regarded as a very efficient exact
maximum likelihood treatment of the posterior integrated
using a Gaussian approximation [7]. However, the formu-
lation here can be easily and mechanically generalised to
other objectives.

A set of personalised speech dictionaries were learnt by
sparsity optimisation in the Grid Corpus [27] which is avail-
able at http://www.dcs.shef.ac.uk/spandh/gridcorpus. This
corpus contains 1000×34 utterances of 34 speakers, con-
fined to a limited vocabulary. The speech was preprocessed
and represented to (essentially) transform the audio signals
into a Mel time-frequency representation, as presented and
discussed by Ellis and Weiss [14]. The data was down-
sampled to8 kHz and high-pass filtered to bias our objective
towards more accuracy in the high-end of the spectrum. The
short-time Fourier transform was computed from windowed
data vectors of length32ms, corresponding toK = 256
samples, and subsequently mapped intoL = 80 bands on
the Mel scale. FromT = 420 s of audio from each speaker,
the non-zero time-frames were extracted for training and
normalised to unity L2 norm. The remainder of the audio
(> 420 s) was set aside for testing. The stochastic gradient
optimisation of the linearly constrainedL1 norm was run for
40,000 iterations. The step-sizeη was decreased throughout
the training. TheN = 256 columns of the dictionaries were
initialised with narrow pulses distributed evenly across the
spectrum and non-negativity was enforced following each
iteration. In Figure 1 is displayed a randomly selected sam-

ple of learnt dictionary elements of one male and one fe-
male speaker. The dictionaries clearly capture a number of
characteristics of speech, such as quasi-periodicity and de-
pendencies across frequency bands.

3.1. Source Separation

This work was motivated by a particular application: single-
channel source separation.1 The aim is to recoverR source
signals from a one-dimensional mixture signal. In that con-
text, an important technique is to perform a linearly con-
strainedL1-norm optimisation in order to fit an observed
signal using a sparse subset of coefficients over an over-
complete signal dictionary. A single column of the mixture
spectrogram is the sum of the source spectra:y =

∑R

i yi.
In the interest of simplicity, this model assumes a0 dB target-
to-masker ratio (TMR). Generalization to general TMR by
the inclusion of weighting coefficients is straightforward.

As a generative signal model, it is assumed thatyi can
be represented sparsely in the overcomplete dictionaryD,
which is the concatenation of the source dictionaries:
D =

[

D1 . . . Di . . . DR

]

. Assuming that theDi

are different in some sense, it can be expected that a sparse
representation in the overcomplete basisD coincides with
the separation of the sources,i.e.we compute

c =
[

c⊤
1

. . . c⊤i . . . c⊤R
]⊤

= L1opt(y,D)

where theci are the coefficients pertaining to theith source.
The source estimates in the Mel spectrum domain are then
re-synthesised aŝyi = Dici. The conversion back to the
time-domain consists of mapping to the amplitude spectro-

1The INTERSPEECH 2006 conference hosts a special session on
this issue, based on the GRID speech corpus. See www.dcs.shef.ac.uk/
∼martin/SpeechSeparationChallenge.htm.



time (s)

S
N

R

N

128 256 5121 7 56 420
5

5.5

6

6.5

7

1
2
3
4
5
6
7

Fig. 2. Dependency of the separation performance mea-
sured as signal-to-noise ratio (SNR) as a function of the
data volume (left), and, the dictionary size,N (right). Only
T = 7 s of speech is needed to attain near-optimal perfor-
mance. The performance increases about 0.5 dB per dou-
bling of N .

Genders SNR (dB)

M/M 4.9±1.2
M/F 7.8±1.3
F/F 5.1±1.4

Table 1. Monaural two-speaker signal-to-noise separation
performance (mean±stderr of SNR), by speaker gender.
The simulated test data consisted of all possible combina-
tions,T = 6 s, of the 34 speakers.

gram and subsequently reconstructing the time-domain sig-
nal using the noisy phase of the mixture. Due to the sparsity
of speech in the transformed domain, the degree of over-
lap of the sources is small, which causes the approximation
to be fairly accurate. Useful software in this connection is
available at http://www.ee.columbia.edu/∼dpwe/. In the fol-
lowing, the quality ofŷi are evaluated in the time-domain
simply as the ratio of powers of the target to reconstruction
error, henceforth termed the signal-to-noise ratio (SNR).

In order to assess the convergence properties of the algo-
rithm, the SNR was computed as a function of the amount
of training data, see figure 2. It was found that useful re-
sults could be achieved with a few seconds of training data,
whereas optimal performance was only obtained after a few
minutes. It was furthermore investigated how the SNR varies
as a function of the number of dictionary elements,N . Each
doubling ofN brings an improvement, indicating the po-
tential usefulness of increased computing power. The above
results were obtained by simulating all possible mixtures
of 8 speakers (4 male, 4 female) at0 dB and computing
the SNR’s on6 s segments. Performance figures were com-
puted on the complete data set of 34 speakers, amounting to
595 combinations, withN = 256 andT = 420 s; see Ta-
ble 1. The test data is available at www2.imm.dtu.dk/∼rko/
singlechannel.

time (s)

co
rr

ec
tr

at
e

0.016 0.063 0.25 1 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. The maximum-likelihood correct-classification rate
as computed in aT = 2 s test window on all combination of
the 34 speakers and 34 dictionaries. If all time-frames are
included into computation, the classification is perfect, but
the performance decreases as smaller windows are used.

3.2. Speaker identification

In many potential applications of source separation the speak-
ers of the mixture would be novel, and have to be estimated
from the audio stream. In order to perform trulyblind sep-
aration, the system should be able to automatically apply
the appropriate dictionaries. Here we attack a simpler sub-
problem: speaker identification in an audio signal with only
a single speaker. Our approach is straightforward: select the
dictionary that yields the sparsest code for the signal. Again,
this can be interpreted as maximum-likelihood classifica-
tion. Figure 3 displays the percentage of correctly classified
sound snippets. The figures were computed on all combina-
tions of speakers and dictionaries, that is34 × 34 = 1156
combinations. The complete data (2 s) resulted in all speak-
ers being correctly identified. Shorter windows carried a
higher error rate. For the described classification framework
to be successful in a source separation task, it is required
that each speaker appears exclusively in parts of the audio
signal. This is not at all unrealistic in normal conversation,
depending on the politeness of the speakers.

4. CONCLUSION AND OUTLOOK

Linear programming is often viewed as a black-box solver,
which cannot be fruitfully combined with gradient-based
optimisation methods. As we have seen, this is not the
case. LP can be used as a subroutine in a larger system,
and perturbations can be propagated forwards and sensitivi-
ties propagated backwards through the LP solver. The only
caution is that LP is by nature only piecewise differentiable,
so care must be taken with regard to crossing through such



discontinuities.
The figures carry evidence that the adapted Mel scale

dictionaries to a large extent perform the job, and that the
generalisation of the results to spontaneous speech depends
to a large extent on designing a sensible scheme for pro-
viding the algorithm with a balanced training data. Further-
more, the system should be able to manage some difficult
aspects of real-room conditions, in particular those in which
the observed signal is altered by the room dynamics. We
feel that a possible solution could build on the principles
laid out in previous work [9], where a head-related trans-
fer function (HRTF) is used to provide additional contrast
between the sources.

We found that using spectrogram patches rather than
power spectra improved the results only marginally, in agree-
ment with previous reports using a related approach [16].
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