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Abstract

Discovering a representation that allows auditory data to be parsimo-
niously represented is useful for many machine learning and signal pro-
cessing tasks. Such a representation can be constructed by Non-negative
Matrix Factorisation (NMF), a method for finding parts-based represen-
tations of non-negative data. Here, we present an extension to convolutive
NMF that includes a sparseness constraint, where the resultant algorithm
has multiplicative updates and utilises the beta divergence as its recon-
struction objective. In combination with a spectral magnitude transform
of speech, this method discovers auditory objects that resemble speech
phones along with their associated sparse activation patterns. We use
these in a supervised separation scheme for monophonic mixtures, find-
ing improved separation performance in comparison to classic convolutive
NMF.

Keywords: Non-negative matrix factorisation; Sparse representations; Con-
volutive dictionaries; Speech phone analysis.

1 Introduction

A preliminary step in many data analysis tasks is to find a suitable representa-
tion of the data. Typically, methods exploit the latent structure in the data. For
example, ICA (Comon, 1994) reduces the redundancy of the data by projecting
the data onto its independent components, which can be discovered by max-
imising a statistical measure such as independence (Bell and Sejnowski, 1995)
or non-Gaussianity (Hyvärinen and Oja, 1997).

Non-negative Matrix Factorisation (NMF) is a parts-based approach that
does not make a statistical assumption about the data. Instead, it assumes
that for the domain at hand—for example grey-scale images—negative num-
bers are physically meaningless: The ICA decomposition of a grey-scale image
may result in basis vectors that have both positive and negative components.
The image is represented by a linear combination of these ICA basis vectors
weighted by both positive and negative coefficients, with some basis vectors
being cancelled out by others. Negative basis components have no real-world
representation in a grey-scale image context, which has led researchers to argue
that the decomposition should be confined to a non-negative space. Formally,

1



this idea can be interpreted as decomposing a non-negative matrix V into two
non-negative factors W and H. The lack of statistical assumptions makes it
difficult to prove that NMF will give correct decompositions, although it has
been shown geometrically that NMF provides a correct decomposition for some
classes of images (Donoho and Stodden, 2004).

Data that contains negative components, for example audio, must be trans-
formed into a non-negative domain before NMF can be applied. Here, we use
a magnitude spectrogram. Spectrograms have been used in audio analysis for
many years (Potter et al., 1947) and in combination with NMF have been applied
to a variety of problems such as speech separation (Virtanen, 2003; FitzGerald
et al., 2006; Smaragdis, 2004) and automatic transcription of music (Abdallah
and Plumbley, 2004).

For some tasks it may be advantageous to perform NMF with additional
constraints placed on either W or H. One increasingly popular and powerful
constraint is that the rows of H have a parsimonious activation pattern for the
basis contained in the columns of W. This is the so called sparseness constraint
(Field, 1994; Olshausen and Field, 2004), which enables the discovery of an
over-complete basis.

Although convolutive NMF produces activation patterns that tend to be
sparse, the addition of the sparseness constraint on H provides a means of
trading off the sparseness of the representation against accurate reconstruction.
Previous algorithms for sparse NMF (Hoyer, 2002; Virtanen, 2003; O’Grady and
Pearlmutter, 2006) have suffered from the scaling problem associated with the
addition of a sparse constraint on H. In order for the algorithm to behave as
required, an additional normalisation step on W is needed (discussed in Sec-
tion 3.2), which may result in W having an additive update rule. We overcome
this restriction by using a normalised version of W explicitly in the reconstruc-
tion objective, and present an algorithm that has multiplicative updates for
both W and H.

We apply our algorithm to the analysis of speech spectrograms, it is therefore
necessary to appropriately define the constituent parts of speech: At a concep-
tual level, the theoretical representation of a sound is called a phoneme, which
is a sound in the most neutral form. Different Phonemes distinguish different
words. Furthermore, Phonemes that are spoken by different speakers may be
identical conceptually but differ physically, e.g., Phonemes may differ in pitch
and duration. A segment of speech that exhibits distinct physical or perceptual
properties is called a phone. Phones occur frequently within speech and are
the constituent components that create a speech spectrogram. In this context,
the auditory objects that are extracted by convolutive NMF are expected to
resemble phones, and will be referred to as such throughout the paper.

This paper is organised as follows: In Section 2 we discuss convolutive NMF
(cNMF) and present an algorithm called sparse convolutive NMF (scNMF) in
Section 3, which includes an additional sparseness constraint on H. In Section 4
we apply sparse convolutive NMF to speech data, and demonstrate its utility
in the extraction of speech phones. We apply such phone sets to a monophonic
mixture separation task in Section 5, and discuss their utility in a speech coding
task in Section 6. We finish, in Sections 7 and 8, with a discussion of related
algorithms and a summarisation.
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2 Convolutive NMF

NMF (Lee and Seung, 2001) is a bilinear non-negative approximate factorisa-
tion, and is formulated as follows: Given a non-negative matrix V ∈ R

≥0,M×N

the goal is to approximate V as a product of two non-negative matrices W ∈
R
≥0,M×R and H ∈ R

≥0,R×N , V ≈ WH, where R ≤ M , such that the recon-
struction error is minimised. In the context of speech spectrogram analysis,
such a model produces R auditory objects that are composed of a single spec-
trum, calculated over all time. For our purposes, we require auditory objects
that capture the time-varying nature of speech, which necessitates a convolu-
tive NMF model. Such a convolutive NMF model has been previously proposed
(Non-negative Matrix Deconvolution, Smaragdis (2004)), which we review in
this section.

In conventional NMF each object is described by its spectrum and corre-
sponding activation in time, while for convolutive NMF each object has a se-
quence of successive spectra and corresponding activation pattern across time.
The conventional NMF model is extended to the convolutive case:

V ≈

To−1
∑

t=0

Wt

t→

H , vik ≈

To−1
∑

t=0

R
∑

j=1

wijt(
t→

hjk), (1)

where To is the length of each spectrum sequence and the j-th column of Wt

describes the spectrum of the j-th object t time steps after the object has begun.

The function
i→

(·) denotes a column shift operator that moves its argument
i places to the right; as each column is shifted off to the right the leftmost

columns are zero filled. Conversely, the
←i

(·) operator shifts columns off to the
left, with zero filling on the right;

D =

[

1 2 3 4
5 6 7 8

]

0→

D =

[

1 2 3 4
5 6 7 8

]

1→

D =

[

0 1 2 3
0 5 6 7

]

3→

D =

[

0 0 0 1
0 0 0 2

]

←2

D =

[

3 4 0 0
7 8 0 0

]

←3

D =

[

4 0 0 0
8 0 0 0

]

,etc...

An important consideration in the formulation of the NMF algorithm is
the selection of an appropriate reconstruction objective. Here, we use the beta
divergence (Kompass, 2005; Cichocki et al., 2006), which is a parameterisable
divergence measure,

DBD(V‖Λ, β) =
∑

ik

(

vik

vβ−1
ik − [Λ]ik

β−1

β(β − 1)
+ [Λ]ik

β−1 [Λ]ik − vik

β

)

, (2)

where β controls the reconstruction penalty and Λ is the current estimate of V,

Λ =
∑To−1

t=0 Wt

t→

H . The choice of the β parameter depends on the statistical
distribution of the data, and its selection requires prior knowledge (see O’Grady
(2007, Chapter 3)). For β = 2, the Squared Euclidean Distance is obtained; for
β → 1, the divergence tends to the Kullback-Leibler Divergence; and for β → 0,
the divergence tends to Itakura-Saito Divergence.

It is evident that Eq. 1 can be viewed as a summation of To conventional
NMF operations. Consequently, as opposed to updating two matrices (W and
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Convolutive NMF with Beta Divergence

Obj=sum(sum((V.*((((V+1E-9).^(b-1))-((lambda+1E-9).^(b-1)))./(b*(b-1)+1E-9))
+(((lambda+1E-9).^(b-1)).*((lambda-V)./(b+1E-9))))));

%Current estimate of V
for t=1:To

Vt(:,:,t)=(W(:,:,t)*padshift(H,t-1));
end
lambda=sum(Vt,3);

%Update W
for t=1:To

Hs=padshift(H,t-1);
W(:,:,t)=W(:,:,t).*((V./(lambda+1e-9).^(2-b))*Hs’)./((lambda+1e-9).^(b-1)*Hs’);

end

%Update H
for t=1:To

Qs=padshift((V./(lambda).^(2-b)),-(t-1));
Ps=padshift((lambda.^(b-1)),-(t-1));
Ht(:,:,t)=Ht(:,:,t).*(W(:,:,t)’*Qs)./((W(:,:,t)’*Ps)+1e-9);

end
H=mean(Ht,3);

Figure 1: Matlab notations for convolutive NMF.

H) as in conventional NMF, To+1 matrices require an update (W0, . . . , WTo−1

and H). The resultant convolutive NMF update equations are

wijt
← wijt

∑T
k=1(vik/[Λ]2−β

ik )
t→

hjk

∑T
k=1[Λ]β−1

ik

t→

hjk

, hjk ← hjk

∑M
i=1 wijt

←−t

(vik/[Λ]2−β
ik )

∑M
i=1 wijt

[
←t

Λ ]β−1
ik

; (3)

corresponding Matlab notations are presented in Figure 1. At every iteration,
both H and Wt are updated for each t. It is worth noting that Wt for t =
0, . . . , To is a tensor and contains a separate W for each t, while a shifted version
of H is shared across all t’s. It is possible to update Wt and H at each t, however
this is not advisable as it results in a biased estimate of H, with the t = To − 1
update dominating over the others (Smaragdis, 2004). A more correct scheme
is to update H to the average result of its updates for all t,

hjk ←

〈

hjk

∑M
i=1 wijt

←−t

(vik/[Λ]ik)
∑M

i=1 wijt

〉

,∀t. (4)

3 Sparse Convolutive NMF

Combining our reconstruction objective (Eq. 2) with a sparseness constraint on
H results in the following objective function:

G(V‖Λ,H, β, λ) = DBD(V‖Λ, β) + λ
∑

jk

hjk, (5)
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where the left term of the objective function corresponds to convolutive NMF,
and the right term is an additional constraint on H that enforces sparsity by
minimising the L1-norm of its elements (Entropy minimisation has also been
used (Shashanka et al., 2007)). The parameter λ controls the trade off between
sparseness and accurate reconstruction.

3.1 Basis Normalisation

The objective of Eq. 5 creates a new problem: The right term is a strictly in-
creasing function of the absolute value of its argument, so it is possible that the
objective can be decreased by scaling Wt up and H down (Wt 7→ αWt and
H 7→ (1/α)H, with α > 1). This situation does not alter the left term in the
objective function, but will cause the right term to decrease, resulting in the
elements of Wt growing without bound and H tending toward zero. Conse-
quently, the solution arrived at by the optimisation algorithm is not influenced
by the sparseness constraint.

To avoid the scaling misbehaviour of Eq. 5 another constraint is needed; by
normalising the convolutive bases we can control the scale of the elements in Wt

and H. Normalisation is performed for each object matrix, Wj , by rescaling it
to the unit L2-norm,

W̄j =
Wj

‖Wj‖
, j = 1, . . . , R, (6)

where the matrix Wj is constructed from the j-th column of Wt at each time
step, t = 0, 1, . . . , To − 1. Furthermore, normalisation of Wj has no adverse
effects on the NMF algorithm, as the objective function (Eq. 5) does not depend
on the norm of the object matrices.

3.2 Additive W Update

An NMF algorithm that uses Eq. 5 as its objective and performs the necessary
basis normalisation results in the following multiplicative update for H,

hjk ← hjk

∑M
i=1 wijt

←−t

(vik/[Λ]2−β
ik )

∑M
i=1 wijt

[
←t

Λ ]β−1
ik + λ

. (7)

The additional unit norm constraint on each object, Wj , complicates the W

update rule and impedes the discovery of a suitable diagonally rescaled learn-
ing rate, ηwijt

, which would result in a multiplicative update (Hoyer, 2002).
Consequently, the following additive update is used,

wijt = wijt + ηwijt

[ T
∑

k=1

(vik/[Λ]2−β
ik )

t→

hjk −

T
∑

k=1

[Λ]β−1
ik

t→

hjk

]

. (8)

Subsequent to this update, any negative values in the set of matrices Wt are
set to zero (non-negativity constraint), and each Wj is normalised (Eq. 6).
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3.3 Multiplicative W Update

A multiplicative update can be obtained by including the normalisation re-
quirement in the objective. Previously, this has been achieved for conventional
NMF using the Squared Euclidean Distance reconstruction objective (Eggert
and Körner, 2004). Here, we derive the multiplicative updates for a convolutive
NMF algorithm utilising beta divergence. The classic NMF update rules (Lee
and Seung, 2001) implement gradient descent, our new updates will also follow
this approach. First, we introduce our new reconstruction objective, which is a
modification of Eq. 2, where each object contained in W is normalised,

DBD(V‖∆, β) =
∑

ik

(

vik

vβ−1
ik − [∆]ik

β−1

β(β − 1)
+ [∆]ik

β−1 [∆]ik − vik

β

)

. (9)

Here, ∆ is the current estimate of V following the normalisation of Wj (Eq. 6).
A consequence of the normalisation requirement is that each Wj must be treated
separately, resulting in column by column generative model,

∆ =

To−1
∑

t=0

R
∑

j=1

w̄jt(
t→

hj), (10)

where w̄jt is a column vector and hj is a row vector. By substituting Eq. 10
into Eq. 5 we obtain

G(V‖∆,H, β, λ) = DBD(V‖∆, β) + λ
∑

jk

hjk. (11)

We can now derive the gradient descent update for H,

hjk ← hjk + ηhjk

∂G

∂hjk

. (12)

Taking the gradient of Eq. 11 with respect to H gives

∂G

∂hjk

=

M
∑

i=1

w̄ijt

←−t

(vik/[∆]2−β
ik )−

M
∑

i=1

w̄ijt[
←t

∆]β−1
ik + λ. (13)

Diagonally rescaling the variables and setting the learning rate to

ηhjk
=

hjk

∑M
i=1 w̄ijt[

←t

∆]β−1
ik + λ

(14)

guarantees to decrease the reconstruction objective (Lee and Seung, 2001), and
gives the following multiplicative update rule for H

hjk ← hjk

∑M
i=1 w̄ijt

←−t

(vik/[∆]2−β
ik )

∑M
i=1 w̄ijt[

←t

∆]β−1
ik + λ

, (15)

which is the same as the update of Eq. 7.
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Sparse Convolutive NMF with Beta Divergence

Obj=sum(sum((V.*((((V+1E-9).^(b-1))-((delta+1E-9).^(b-1)))./(b*(b-1)+1E-9))
+(((delta+1E-9).^(b-1)).*(((delta)-V)./(b+1E-9))))))+lambda*sum(sum(H));

%Current estimate of V
for t=1:To

Vt(:,:,t)=W(:,:,t)*padshift(H,t-1);
end
delta=sum(Vt,3);

%Update W
for t=1:To

Hs=padshift(H,t-1);
for j=1:R

NumMatW=((V./delta.^(2-b))+(W(:,j,t)*W(:,j,t)’*(delta.^(b-1))))*Hs(j,:)’;
DenMatW=(delta.^(b-1)+(W(:,j,t)*W(:,j,t)’*(V./(delta.^(2-b)))))*Hs(j,:)’;
W(:,j,t)=W(:,j,t).*(NumMatW)./(DenMatW+1e-9);

end
end
%Normalise W
for j=1:R

scaling=sqrt(sum(sum(W(:,j,:).^2)));
W(:,j,:)=squeeze(W(:,j,:))./((ones(M,To)*scaling)+1e-9);

end

%Update H
for t=1:To

Qs=padshift((V./(delta).^(2-b)),-(t-1));
Ps=padshift(delta.^(b-1),-(t-1));
Ht(:,:,t)=H.*(W(:,:,t)’*Qs)./((W(:,:,t)’*Ps)+lambda+1e-9);

end
H=mean(Ht,3);

Figure 2: Matlab notations for sparse convolutive NMF.

Similarly, we derive a new update for wjt,

wijt ← wijt + ηwijt

∂G

∂wijt

. (16)

To calculate the gradient of Eq. 11 with respect to wjt, we first need to calculate
the gradient of ∆ using the quotient rule,

∂[∆]ak

∂wijt

=

∂

(

∑To−1
p=0

∑R
q=1

waqp

‖Wq‖

p→

hqk

)

∂wijt

(17)

=
‖Wj‖

t→

hjk − (wijt

t→

hjk)
∂‖Wj‖
∂wijt

‖Wj‖2
, (18)

where a = i; p = t; q = j, and
∂‖Wj‖
∂wijt

= W̄j for the L2-norm. The gradient of

Eq. 11 can now be expressed as

∂G

∂wijt

=

T
∑

k=1

[ vik

[∆]2−β
ik

− [∆]β−1
ik

]∂[∆]ik
∂wijt

. (19)
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Setting the learning rate to

ηwijt
=

wijt‖Wj‖
2

∑T
k=1

t→

hjk

[

‖Wj‖[∆]β−1
ik + w̄ijt(wijt(vik/[∆]2−β

ik ))
]

, (20)

then rearranging Eq. 16 and scaling by ‖Wj‖/‖Wj‖ results in the following
element-wise update,

wijt ← wijt

∑T
k=1

t→

hjk

[

(vik/[∆]2−β
ik ) + w̄ijt(w̄ijt[∆]β−1

ik )
]

∑T
k=1

t→

hjk

[

[∆]β−1
ik + w̄ijt(w̄ijt(vik/[∆]2−β

ik ))
]

, (21)

and column-wise update,

wjt ← wjt ⊗

[

(V/∆2−β) + (w̄jtw̄
T

jt∆
β−1)

]
t→

hj

[

∆β−1 + (w̄jtw̄
T

jt(V/∆2−β))
]
t→

hj

, (22)

where ⊗ denotes an element-wise (also known as Hadamard or Schur product)
multiplication, and division is also element-wise. The update for wjt is now in
terms of its normalised version, w̄jt, which is calculated (Eq. 6) subsequent to
the update. As long as ηwijt

and ηhjk
are sufficiently small, these updates should

reduce Eq. 11. Matlab notations for sparse convolutive NMF are presented in
Figure 2.

3.4 Sparse Convolutive NMF Applied to Audio Spectra

An interesting property of the sparseness constraint is that it enables the dis-
covery of an over-complete basis, i.e., a basis that contains more basis functions
than are necessary to span the projection space. To illustrate the performance
of convolutive NMF on data generated from an over-complete basis, consider
the example presented in Figure 3. A signal that is composed of three auditory
objects, each occurring at least twice, is presented: The first object is an ex-
ponentially decreasing then increasing frequency sweep centred around 5 kHz,
the second object has a frequency sweep that is the reverse of the first centred
at 3 kHz, and the third object is a combination of the first two. Convolutive
NMF is applied to the signal with R = 3 and T = 2 seconds; the discovered
auditory object are presented along with their activations, which indicate the
start time of each auditory object. It is evident from the discovered objects
that only the first two auditory objects are identified. The reason being that
the third object can be expressed in terms of the first two, and the signal can
be adequetly described by using the first two objects. Therefore, convolutive
NMF achieves its optimum with just the first two linearly independent objects,
without the need for an over-complete representation.

When a sparseness constraint is introduced, the existence of an over-complete
representation helps minimise the objective, allowing for a sparser description
of the signal. Sparse convolutive NMF applied to the same signal (Figure 4)
identifies all three objects and their associated activation patterns, successfully
revealing the over-complete basis used to generate the signal. Furthermore,
sparse convolutive NMF produces ten activations while convolutive NMF pro-
duces twelve (R = 2).
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Figure 3: Spectrogram of a signal composed of an over-complete basis, and its
factors obtained by convolutive NMF. It is evident that the first two objects are
discovered, while the third object is represented in terms of the first two.

4 Sparse Convolutive NMF on Speech Spectra

We have demonstrated the properties of sparse convolutive NMF when ap-
plied to synthetic audio data, we will now turn our attention to real-world
data. We apply sparse convolutive NMF to speech, and present a learned ba-
sis for the sparse representation of speech using the TIMIT (Garofolo et al.,
1993) database. Recently, such work has been presented for convolutive NMF
(Smaragdis, 2007).

4.1 Discovering a Phone-like Basis

To illustrate the differences between the phones extracted by convolutive NMF
and sparse convolutive NMF we perform the following three experiments for each
algorithm: We take around 30 seconds of speech from a single male speaker
(DMT0), a single female speaker (SMA0), and around 15 seconds from both to
create a contiguous mixture. The data is normalised to unit variance, down-
sampled from 16 kHz to 8 kHz and a magnitude spectrogram of the data is
constructed. We use a FFT frame size of 512, a frame overlap of 384 and a
hamming window to reduce the presence of sidelobes. We extract 40 bases,
R = 40, with a temporal extent of 0.176 seconds, To = 8, and run convolutive
NMF with β = 1 for 200 iterations. The extracted bases for male, female and
mixed speech are presented in Figures 5, 6 & 7 respectively. The experiments
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Figure 4: Spectrogram of a signal composed of an over-complete basis, and its
factors obtained by sparse convolutive NMF. It is evident that the algorithm
successfully reveals an over-complete basis for the data.

are repeated for sparse convolutive NMF with λ = 15, and the corresponding
bases are presented in Figures 8, 9 & 10

4.1.1 Convolutive NMF Basis

For convolutive NMF, the harmonic nature of the extracted bases suggest that
they correspond to speech phones. The verification of which, can be achieved
by listening to an audible reconstruction, which produces sounds that resemble
small segments of speech i.e., speech phones. An audible reconstruction can be
created by combining the magnitude spectrum of the NMF estimate with the
phase of the original input, which represents a Polar form of the complex FFT
coefficients, and returning to Cartesian form where an inverse FFT transforma-
tion can be performed. The resultant waveform exhibits perfect phase, and its
quality is uniquely dependant on the magnitude spectrum estimated by NMF.

It is evident that most of the phones represent harmonic series with differing
pitch inflections, while a smaller subset of phones contain wideband compo-
nents that correspond to consonant sounds. The form of the extracted basis
functions are very dependent on the data, and reflect the timbral characteristics
of each speaker’s voice. Comparison of the male and female phone sets reveal
that the most important difference between the two is the spacing between
the harmonics of the phones. For the male speaker the harmonics are spaced
much closer together, which is indicative of a lower pitched voice, while the fe-
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Figure 5: A collection of 40 phone-like basis functions discovered by cNMF for
a single male speaker (DMT0) taken from the TIMIT speech database.
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Figure 6: A collection of 40 phone-like basis functions discovered by cNMF for
a single female speaker (SMA0) taken from the TIMIT speech database.

male speaker phone set contains harmonics which are farther apart, indicating
a higher pitched voice. Otherwise, both phone sets are quite similar. For the
mixture phone set, it is evident that the extracted phones correspond to either
the male or female phone set. This indicates that the timbral characteristics of
the male and female speaker are sufficiently different, such that phones that are
representative of both cannot be extracted. Although, this may not be true for
the consonant phones.

Due to the approximative nature of NMF, the number of bases, R, and the
temporal extent of each basis, To, affects the ability of the algorithm to repre-
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Figure 7: A collection of 40 phone-like basis functions discovered by cNMF for
a mixture of a male (DMT0) and female speaker (SMA0) taken from the TIMIT
speech database.

sent phonetic content in a speech spectrogram. This is reflected in the Signal-to-
Noise Ratio (SNR) of the original spectrogram and its NMF reconstruction. For
a large value of R, convolutive NMF can more accurately represent individual
phones as individual basis functions, resulting in better reconstruction quality.
For small values of R the resultant bases are forced to simultaneously represent
multiple phones in each individual basis function, resulting in a blurry distinc-
tion between the bases, and poor reconstruction quality. For the purposes of
our illustrative examples, the chosen algorithm parameters suffice.

4.1.2 Convolutive NMF Basis with a Sparseness Constraint

By placing a sparseness constraint on the activations of the basis functions,
we specify that the expressive power of each basis be extended such that it
is capable of representing speech parsimoniously, much like an over-complete
dictionary. The result is that the extracted phones exhibit a structure that is
rich in phonetic features, where harmonics at higher frequencies have a much
greater intensity than seen in the phones extracted by convolutive NMF. This
reflects the requirement that the basis functions in our new sparse phone set
exhibit enough features to produce a parsimonious activation pattern.

Analysis of the male and female sparse phone set reveals another impor-
tant difference between the two speakers. In addition to difference in harmonic
spacing, it is evident that the structure of the male phones are of a more com-
plex nature, where changes over time are much more varied than for the female
phone set. Furthermore, for the male sparse phone set, basis functions that
contain both harmonic series and wideband components are extracted. For the
mixture phone set, the effects are the same as those previously observed, where
extracted phones correspond to either the male or female sparse phone set.

It is worth noting the effects of the selection of the weighting parameter λ.
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Figure 8: A collection of 40 phone-like basis functions for a single male speaker
(DMT0) taken from the TIMIT speech database. The basis is extracted using
scNMF with λ = 15.
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Figure 9: A collection of 40 phone-like basis functions for a single female speaker
(SMA0) taken from the TIMIT speech database. The basis is extracted using
scNMF with λ = 15.

Since λ controls the tradeoff between accurate reconstruction and sparseness of
the activations, larger values for λ will result in degradation of the quality of the
approximation. This effect can be ameliorated by increasing R or reducing λ.
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Figure 10: A collection of 40 phone-like basis functions for a a mixture of a male
(DMT0) and female speaker (SMA0) taken from the TIMIT speech database. The
basis is extracted using scNMF with λ = 15.

4.1.3 Sparseness of Activations

The sparseness of the activations produced by convolutive NMF, Hc, and sparse
convolutive NMF, Hsc, can be compared using the Kurtosis Ratio (KR),

KR(Hsc,Hc) =
1
R

∑R
j=1 kurt(hsc

j )

1
R

∑R
j=1 kurt(hc

j)
, (23)

where kurt(c) = 〈(c−µ)4〉
σ4 −3; KR > 1 indicates that the Hsc is sparser than Hc,

and vice versa. The KR values for our male, female and mixed representations
are 2.03, 1.74 and 1.98 respectively. Indicating that sparse convolutive NMF
has indeed discovered a sparse representation for each.

5 Supervised Known Speaker Separation

To demonstrate the utility of the extracted phone sets, we apply them to the
separation of speakers from a monophonic mixture. From inspection of the
NMF generative model, we can see that the estimate for V is constructed by
taking the outer product of each column of W and row of H, then summing the
resultant matrices,

V ≈

R
∑

j=1

wjhj .

This reconstruction scheme together with a magnitude spectrogram representa-
tion, where overlapping spectra sum approximately, constitute a scheme whereby
different sounds, represented by different basis functions, can be separated from
the mixture (this scheme can also be extended to the convolutive NMF). In
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Table 1: Information on the Training Data for Each Speaker, Including Duration
of Training Data and Phone Information (39 Phoneme Set, Lee and Hon (1989)).

Speakers
Training

Len. (sec.)

Phone Information
Total Time Len. (ms)
No. Min. Avg. Max.

ABC0 23 322 17 70 206
Male BJV0 24 331 23 73 175

DWM0 27 328 15 82 186

EXM0 32 350 17 96 213
Female KLH0 26 327 24 87 179

REH0 25 361 16 61 161

contrast, ICA separates signals by making statistical assumptions about the
signals, i.e, statistical independence. Therefore, the thoerem that proves identi-
fiability of sources in ICA, i.e., Darmois’ Theorem (Darmois, 1953), cannot be
extended to NMF as it has no solid statistical notions behind it. Furthermore,
ICA can not be applied to the separation of monophonic signals, as more than
one observation is required to separate independent sources.

As illustrated in our previous experiments, the structure of the bases that
are extracted from the speech data are uniquely dependent on the speaker (given
the same algorithm parameters). In the context of speech separation, it is not
unreasonable to expect that the bases extracted for a specific speaker adequately
characterise the speaker, such that they can be used to discriminate them from
other speakers. For a monophonic mixture where a number speakers are added
together, it is possible to separate the speakers in the mixture by constructing
an individual magnitude spectrogram for each speaker, using the phones specific
to that speaker.

It is evident that this scheme requires that the bases be categorised into
individual phone sets. If the speakers are known in advance, a phone set can
be extracted for each speaker and used in this scheme in a supervised manner.
For example, consider a mixture of a known male and female speaker. The set
of male bases, Wm

t , and female bases, W
f
t , are learned from the training data,

and it is assumed that they will roughly correspond to bases extracted from any
unknown sentences spoken by that speaker. By arranging the respective bases
contiguously to form a combined basis, W

mf
t = [Wm

t |W
f
t ], we can fit the mix-

ture to the combined basis by fixing Wt = W
mf
t and updating H. Separation

can be achieved by constructing an individual magnitude spectrogram using
each speaker’s bases and associated activations. The separation performance of
such an approach is highly dependant on the similarity of each speaker’s phone
set. For a typical male and female mixture, the respective phone sets will be
sufficiently different to achieve good results.

We use the following procedure for the separation of a known male and
female speaker from a monophonic mixture:

1. Obtain training data for the male, sm(t), and female, sf (t), speaker; create
a magnitude spectrogram for both, and extract corresponding phone sets,
Wm

t and W
f
t , using sparse convolutive NMF.
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Table 2: The Speakers and Sentences Used for Each Male and Female Mix-
ture, Including Information About Sentence Duration and Phone Content (39
Phoneme Set, Lee and Hon (1989)).

Mix.
Speaker Sentence Len. (sec.) Total Phones

Male Female Male Female Male Female Male Female

1 ABC0 EXM0 SX331 SX291 2.45 3.48 32 36
2 ABC0 KLH0 SX331 SX357 2.45 3.69 32 43
3 ABC0 REH0 SX331 SX325 2.45 1.93 32 25
4 BJV0 EXM0 SX347 SX291 3.62 3.48 59 36
5 BJV0 KLH0 SX347 SX357 3.62 3.69 59 43
6 BJV0 REH0 SX347 SX325 3.62 1.93 59 25
7 DWM0 EXM0 SX286 SX291 3.66 3.48 52 36
8 DWM0 KLH0 SX286 SX357 3.66 3.69 52 43
9 DWM0 REH0 SX286 SX325 3.66 1.93 52 25

2. Construct a combined basis set W
mf
t . This results in a basis that is twice

as big as R.

3. Take a mixture that is composed of two unknown sentences spoken by our
selected speakers, and create a magnitude spectrogram of the mixture.
Fit the mixture to W

mf
t by performing sparse convolutive NMF with Wt

fixed to W
mf
t , and learn only the associated activations H.

4. Partition H such that the activations are split into male, Hm, and female,
Hf , parts that correspond to their associated bases, H = [Hm|Hf ]T.

5. Construct a magnitude spectrogram for both speakers, using their respec-
tive bases and activations: Sm =

∑To−1
t=o Wm

t Hm; Sf =
∑To−1

t=o W
f
t H

f .

6. Use the phase information from the mixture to create an audible recon-
struction for both speakers, ŝm(t) & ŝf (t).

This procedure may also be used for convolutive NMF, and can be generalised
for more than two speakers, and speakers of the same gender.

5.1 Separation Experiments

Here, we compare the separation performance of convolutive NMF and sparse
convolutive NMF. Our interest lies in how the algorithms perform for the same
algorithm parameters, which may not necessarily be the optimal choice for each
algorithm. For an extensive study of the relationship between parameter selec-
tion and separation performance for convolutive NMF, see Smaragdis (2007).

We select three male and three female speakers from the TIMIT database,
and create a training set for each that includes all but one sentence spoken
by that speaker. We artificially generate a monophonic mixture by summing
the remaining sentences for a selected male female pair, generating a total of
nine mixtures in this way. More formally, each sentence pair is normalised to
unit variance, down-sampled from 16 kHz to 8 kHz, and summed together. A
magnitude spectrogram of each mixture is constructed using a FFT frame size
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of 512, a frame overlap of 256 and a hamming window. Information pertaining
to the speakers and their training data is presented in Table 1, while information
on the mixtures is presented in Table 2.

The separation performance for both algorithms is evaluated for each mix-
ture over a selection of values for R (R = [40 80 140 220]). For both algorithms
the temporal extent of each phone is set to 0.224 seconds (To = 6), the number
of iterations is 150, β is set to 1 and each experiment is repeated for 10 Monte
Carlo runs. For convolutive NMF, a total of 24 speaker phone sets are extracted
and used in 360 (9×4×10) separation experiments. For sparse convolutive NMF
separation performance is tested for λ = [0.01 0.1 0.3 1.0 2.0]; resulting in 120
(6× 4× 5) speaker phone sets and 1800 (9× 4× 5× 10) separation experiments.

For the purposes of ease of comparison with existing separation methods, we
evaluate the separation performance of the sparse convolutive NMF algorithm
using the measures provided by the BSS_EVAL toolbox (Févotte et al., 2005). The
performance measures are based on the principle that a given source estimate,
ŝ, is composed as a sum that includes the original source and different classes
of noise,

ŝ(t) = s(t) + ǫi(t) + ǫn(t) + ǫa(t), (24)

where ǫi(t) is noise due to interference from other sources, ǫn(t) is perturbating
noise (such as Gaussian noise) and ǫa(t) is the noise due to artifacts (such as
musical noise). The noise introduced by each class is estimated by the toolbox
functions and used in the following global performance measures:

• Source-to-Artifact Ratio (SAR): Measures the level of artifacts in the
source estimate,

SAR =
‖s + ǫi + ǫn‖

2

‖ǫa‖2
. (25)

• Source-to-Interferences Ratio (SIR): Measures the level of interference
from the other sources in each source estimate,

SIR =
‖s‖2

‖ǫi‖2
. (26)

• Source-to-Distortion Ratio (SDR): Provides an overall separation perfor-
mance criterion,

SDR =
‖s‖2

‖ǫi + ǫn + ǫa‖2
. (27)

All performance measures are expressed in dB, with higher performance values
indicating better quality estimates.

5.1.1 Convolutive NMF Separation Performance

In this section, we examine the separation performance of convolutive NMF
when applied to our generated mixtures. The results for each experiment are
averaged over all runs and are presented in Figure 11. Each separation measure
is illustrated as a bar chart, where mixtures are plotted against the number of
bases used, and bar height indicates performance. For illustrative clarity, the 9
mixtures are arranged in ascending order.
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Figure 11: Separation performance for cNMF: A bar chart for each performance
measure (SDR, SIR and SAR) is presented, where the performance for each
mixture, in ascending order, is plotted against the number of bases. Note that
the scales for the z-axis are expressed in dB and change for each plot.

The resultant performance values are very dependant on the mixture under
consideration, this may reflect similarity in the timbral characteristics of the
speakers in each mixture. On average, mixture 7 performed worst for all per-
formance measures, while mixture 2 performed best. The SDR results, which
indicate overall performance, improve for most mixtures as the number of bases
gets larger. The average SDR over all mixtures range from -0.18 dB for 40 bases
to 0.96 dB for 220 bases. The same is also true for SAR, where performance
rises from 1.75 dB at 40 bases to 3.37 at 220 bases. For the SIR results, best
performance is achieved when 80 bases are used.

5.1.2 Sparse Convolutive NMF Separation Performance

The results in Figure 11 can be compared with the corresponding results for
sparse convolutive NMF in Figure 12, in which 4 sets of results pertaining to
different values of λ are presented.

For added clarity, we statistically analyse the performance of convolutive
NMF and sparse convolutive NMF by collating the results from all experiments
(Figure 11 & Figure 12), and represent the results using box plots, where SDR,
SIR and SAR are presented in Figures 13, 14 & 15 respectively. Each box
presents information about the median and the statistical dispersion of the re-
sults. The top and bottom of each box represents the upper and lower quartiles,
while the length between them is the interquartile range; the whiskers represent
the extent of the rest of the data, and outliers are represented by +.

The SDR results indicate that for λ = [0.1, 0.3], the median performance
obtained (0.66 dB, 0.62 dB) exceeds convolutive NMF (0.44 dB) for our given
algorithm parameters and data. It is also evident that a better spread of results
is produced for sparse convolutive NMF; demonstrating that when λ is chosen
appropriately, sparse convolutive NMF achieves superior overall performance.
For SIR, λ = 0.3 produces the best spread of results, which indicates that
sparse convolutive NMF is more resilient to interference from other sources.
However, for SAR, convolutive NMF produces the best results; this may reflect
the fact that each sparse phone set exhibits phones that are rich in phonetic
content, which may manifest as artifacts in the resultant source estimates. It is
also evident that the performance of the sparse convolutive algorithm degrades
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Figure 12: Separation performance for sparse convolutive NMF: A bar chart for
each performance measure (SDR, SIR and SAR) is presented for a selection of
λ values, where the performance for each mixture, in ascending order, is plotted
against the number of bases. Note that the scales for the z-axis change for each
plot and are expressed in dB.
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Figure 13: A comparison of the SDR results obtained by convolutive and sparse
convolutive NMF: Box plots are used to illustrate the performance results, with
each box representing the median and the interquartile range of the results. It
is evident that for λ = 0.1, a better spread of results is obtained, indicating that
sparse convolutive NMF achieves superior overall performance.
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Figure 14: A comparison of the SIR results obtained by convolutive and sparse
convolutive NMF: Box plots are used to illustrate the performance results. For
λ = 0.1, a better spread of results is obtained, indicating that sparse convolu-
tive NMF produces estimates that are more resilient to interference from other
sources.

significantly for large λ values, so much so, that it renders the results useless,
for our data this is especially evident when λ ≥ 1.
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Figure 15: A comparison of the SDR results obtained by convolutive and sparse
convolutive NMF: Box plots are used to illustrate the performance results, with
each box representing the median and the interquartile range of the results, the
whiskers represent the spread of the results. Here, convolutive NMF achieves
the best results. This may reflect the fact that sparse phone sets exhibit phones
that are rich in features, which may produce artifacts in the resultant source
estimates.

6 Coding Efficiency of Bases

We demonstrate the utility of sparse convolutive NMF in the information coding
of speech data, we employ a rudimentary scheme whereby the K largest coeffi-
cients in each column of H, along with their positions, are used to reconstruct
the data,

ΛK =

To−1
∑

t=0

Wt max(K,
t→

H) 0 < K ≤ R, (28)

where the max operator creates a matrix the same dimensions as H, with all
but the K largest coefficients in each column being zeroed. Here, we consider
only the reconstruction of the magnitude spectrogram and do not address how
to encode phase information.

We use an experimental procedure similar to that used in our separation
experiments, whereby we fix W to the basis for our speaker and fit an unknown
sentence to it by updating H. We then reconstruct ΛK by using its K largest
coefficients, over K = 1, . . . , R, and measure reconstruction quality using SNR.
We select a male (ABC0) and female speaker (EXM0), and use the 220 basis set
learned for the experiments in the previous section. The reconstruction quality
for a range of λ values is investigated and each experiment is repeated for 10
Monte Carlo runs; the results are presented in Figure 16.

The curves in Figure 16 illustrate the trade-off between the fidelity of the
reconstruction and the coding cost, expressed in coefficients. We are interested
in the transitional phase leading to quiescent value for SNR; the quicker the
convergence the fewer coefficients needed to reconstruct Λ. The coding efficiency
for convolutive NMF (◦) can be easily compared with the other curves, which
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Figure 16: Coding efficiency curves for sparse convolutive NMF, for both a male
(left: ABC0) and female (right: EXM0) speaker. The curve for convolutive NMF
(◦) can be contrasted with sparse convolutive NMF (�: λ = 0.001, ♦: λ = 0.01,
△: λ = 0.1, ⊲: λ = 0.3, ×: λ = 1). It is evident that sparse convolutive NMF
provides a faster rate of convergence to a quiescent SNR. Furthermore, for large
λ, a degenerative effect on reconstruction quality is evident, which is indicative
of the tradeoff between sparseness and reconstruction quality.

represent the results for sparse convolutive NMF.
For both speakers, it is evident that sparse convolutive NMF needs fewer

coefficients to reach a quiescent SNR value, the SNR achieved is very depen-
dent on λ, which is indicative of the trade-off between the sparseness of H and
accuracy of reconstruction, this effect is particularly evident for large λ. For
the male speaker, λ = 0.001 provides an increase in SNR over convolutive NMF
when K ≤ 15, while λ = 0.01 achieves the best performance when K ≤ 3. Fur-
thermore, for λ = 0.01 with K = 3 the SNR achieved (18 dB) produces a level
of reconstruction quality such that the encoded sentence is intelligible. For the
female speaker, λ = 0.01 produces superior quality when K ≤ 4, while λ = 0.001
produces superior quality for K ≥ 6. For both speakers λ = [0.1, 0.3, 1] never
exceeds the performance of convolutive NMF at any point along the curve.
Therefore, these values are an inappropriate choice for our data and produce
results that are of no use. It is also evident that there is a faster convergence
rate for the female speaker’s coding efficiency curves, which may be due to the
lower SNRs achieved for these reconstructions. Furthermore, the female coding
efficiency curves reveal that λ = 0.001 is superior for all K ≥ 6, which indi-
cates that for a carefully selected λ the sparseness constraint may also improve
reconstruction. Although, in this case the improvement in SNR is marginal.

7 Discussion

The advantage obtained by combining convolutive NMF with a sparseness con-
straint on the activations, is due to the requirement that a parsimonious rep-
resentation must be found in order to satisfy sparseness. Such representations
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extract bases that are rich in phonetic structure, and exhibit superior separation
properties.

In contrast to previously proposed algorithms, which have additive updates
(Hoyer, 2002; Virtanen, 2003; O’Grady and Pearlmutter, 2006), our NMF al-
gorithm retains its advantages of parameter-independent gradient descent and
fast convergence. Moreover, multiplicative updates ensure that the algorithm
arrives at some solution, which from our experience, has not always been the
case for additive update algorithms. Similar multiplicative algorithms have been
proposed (Virtanen, 2007), although the proposed updates do not necessarily
decrease the value of the cost function. From our experience with the updates
derived for our algorithm, the value of the cost function always decreases, which
is possibly due to our careful treatment of the scaling ambiguity caused by us-
ing the L1-norm sparseness constraint, as demonstrated by Eggert and Körner
(2004).

An additional benefit to our algorithm is that it utilises the beta divergence,
which enables different reconstruction penalty schemes to be selected depend-
ing on some additional requirement, e.g., the perceptual quality of the NMF
reconstruction (O’Grady, 2007, Chapter 3); although, such benefits are not dis-
cussed in this paper. Furthermore, since the beta divergence encompasses both
the Square Euclidean Distance and the Kullback-Leibler Divergence—the NMF
reconstruction objectives originally proposed by Lee and Seung (2001), and
which have remained the most popular choice for implementing the algorithm—
derivation of updates for each is unified, which differs to the general approach
taken in the literature where algorithms for both are derived and presented
individually.

Normalisation of the objects in W introduces an asymmetry between W and
H, which makes it difficult to prove convergence properties of Eq. 22 as discussed
in Lee and Seung (2001). Nonetheless, we have performed many experiments
with our algorithm and it converges to sensible solutions every time. Eggert and
Körner (2004) propose that convergence can be explained by the fact that the
rescaling of the gradient introduced by the multiplicative update rule, results
in a gradient step that has a positive projection on the true gradient, due to
the non-negativity constraint. Furthermore, as long as the gradient step size is
sufficiently small (this is true when Λ approaches V), convergence is achieved—
we believe this to be true in our case also.

Finally, due to the fact that our algorithm is implemented using column-wise
updates for Wt (because of the normalisation of the objects, Wj , contained in
W), the run time of the algorithm increases greatly: Consider speaker ABC0

from Table 1, to extract 40 bases (as per our experiments) on a 2.53 GHz Intel
Pentium 4 computer with 256 Mb of RAM, takes four minutes for convolutive
NMF, while the same experiment takes 50 minutes for sparse convolutive NMF.
Furthermore, sparse convolutive NMF algorithms with additive updates may
run faster too. However, our multiplicative algorithm will always arrive at a
solution with better quality results, and removes the requirement to select both
an appropriate learning rate and λ, which can sometimes be painfully difficult
to achieve.
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8 Conclusion

In this paper, we presented a sparse convolutive NMF algorithm, which ef-
fectively discovers a sparse parts-based representation for non-negative data.
This method extends the convolutive NMF objective by including a sparseness
constraint on the activations, enabling the discovery of over-complete represen-
tations. Moreover, in contrast to previously proposed algorithms, normalisation
of the basis vectors is explicitly included in the reconstruction objective, re-
sulting in multiplicative updates and more stable convergence properties. We
have applied the algorithm to speech data, and have demonstrated its superior-
ity to convolutive NMF, when applied to the separation of monophonic speech
mixtures and speech coding.
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