
1028 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 6, NOVEMBER 1992

the given training data, it can possibly generalize under the same
condition that (10) holds true. However, the size of a training set
required for any empirical distribution to reflect appropriately the
true underlying probability is another issue that is closely related to
the Law of Large Numbers in statistics.

In summary, our (10) is justified by mathematically rigorous argu-
ment under the imposed condition of [2]. We agree that sufficiently
many hidden neurons are required to satisfy that condition in general.
If we have no a priori knowledge of the data generation mechanism,
infinitely many neurons may truly be necessary to model every
possible underlying probability. However, if we have available any
knowledge to restrict possible probability distributions to a small
hypothesis class, then finitely many hidden neurons may suffice to
model every member of the class. Therefore, evaluation of the number
of neurons required to provide the network with sufficient function
capacity is relative to the a priori knowledge available in a specific
situation, and is not considered to be clarified in general. Thus our
feeling is that we do not have any definite answer to the question
whether our required condition is impractical or not.

REFERENCES

E. Barnard, “Comment on ’Bayes statistical behavior and valid gener-
alization of pattern classifying neural networks’,’’ IEEE Trans. Neural
Networks, vol. 3 , Nov. 1992, this issue.
F. Kanaya and S. Miyake, “Bayes statistical behavior and valid gen-
eralization of pattern classifying neural networks,” I€€E Trans. Neural
Networks, vol. 2, pp. 471475, July 1991.
D. Ruck, S. Rogers, M. Kabrisky, M. Oxley, and B. Suter, “The mul-
tilayer perceptron as an approximation to a Bayes optimal discriminant
function,” IEEE Trans. NeuralNetworks, vol. 1, pp. 296-298, Dec. 1990.

Comments on “Dynamic Programming Approach to
Optimal Weight Selection in Multilayer Neural Networks”

Barak A. Pearlmutter

In the above paper, Saratchandran’ presents an efficient algorithm
using dynamic programming to find weights which load a set of
examples into a feedforward neural network with minimal error.
.YP-complete problems have been reduced to special cases of this
loading problem [2], [3], so an efficient algorithms implies P = XP,
a significant result indeed.

Regrettably a confusion lies buried in the paper’s notation. Since
u ’ (k) is used to represent the weights from layer k to layer k + 1, it
might seem reasonable to use U’* [k) to represent the setting of these
weights that minimizes the error. The author proposes to compute
~ ‘ (n - l), then ul*(n - 2) , etc., thus computing optimal settings
for all the weights. However, us*(k) is a function of the settings
of the weights at all the other layers, and should really be written
w * (k . w (l) , w (k - 1). w (k + 1) ul(n - I)) .

Manuscript received February 8, 1992.
The author is with the Department of Computer Science and Engineer-

ing, Oregon Graduate Institute of Science & Technology, Beaverton, OR
97006-1999.

IEEE Log Number 9201745.
P. Saratchandran, IEEE Trans. Neural Networks, vol. 2, pp. 465-467, July

1991.

This makes the problem with the algorithm clear. First the weights
w (n - 1) are set optimally. Then the weights w (n - 2) are changed to
optimal. At this point us (n - 1) is no longer optimal, as the assumption
made when their optimal setting was calculated, namely that the unit
states ~ (n - 1) are held constant, which necessitates holding w (l) ,
. . . , u>(n - 2) constant, has been violated.

REFERENCES

[l] A. Blum and R. L. Rivest, “Training a 3-node neural net is NP-
complete,” in Advances in Neural Information Processing Systems I , D.
Touretzky, Ed. New York: Morgan Kaufman, 1989.

[2] J. S. Judd, “Learning in networks is hard,” in IEEE First Int. Con$ on
Neural Networks, San Diego, CA, June 21-24, 1987, pp. 685492.

Authors’ Reply

P. Saratchandran

The primary concern of Dr. Pearlmutter is that the algorithm
proposed in my paper implies P = although nowhere in the
paper is such a claim made. In fact the algorithm only proposes an
iterative layer by layer approach to training a multilayer feed forward
network without claiming that it scales polynomially with problem
size.

The concern seems to be due to some misunderstandings about
the implementation of dynamic programming based algorithms. Such
details were not included in the paper as they are well documented
in text books [1]-[3] on dynamic programming. The weights w*(..)
derived in the paper are for each quantized state of y(..) and are not
global optimal weights. Following explanation of implementation will
further clarify any misgivings that the algorithm runs in polynomial
time.

Because neuron activation functions are nonlinear the outputs y
for every layer has to be quantized [1]-[3] and the optimal weights
U) * computed for each quantized state. Thus for the (n - 1)th layer,
corresponding to each quantized state of y (n - l), we can compute
a w * (n - 1) and a minimum error I (y (n - 1)) using (8) and (9) in
the paper. Store these in a table.

At (n - 2)nd layer, for each quantized state of y (n - 2) , we repeat-
edly calculate E* (n - 2) and the error I(y(n - 2)) corresponding to
every quantized state of y (n - 1) using the appropriate c * (n - 1) in
(12) in the paper. Thus for every quantized y (n - 2) we will have as
many { w * (n - 2) . u * (n - 1)) as the number of states of y (n - 1).
For each state of y(71 - 2) pick only that w * (n - 2), w * (n - 1)
which resulted in the lowest error I (y (n - 2)) and store them in a
table as we need them for the calculation of 7r$*(n - 3) . Continue
this procedure until we reach the first layer.

At the first layer there is no need to quantize y (1) as these are
the inputs to the network and consequently known. So we only need
compute the us*(l) and the error I (y (1)) corresponding to every
quantized state of y(2) using the appropriate { ~ * (2) , us*(n -
2) . xl*(n - 1)} from the table generated at the 2nd layer. The
u , * (l) that resulted in the lowest error I(y(1)) and the corresponding

Manuscript received March 25, 1992
The author is with the School of Electrical and Electronic Engineering,

IEEE Log Number 9201746
Nanyang Technological University, Singapore 22263

0162-8828/92$03.00 0 1992 IEEE

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on July 27, 2009 at 14:55 from IEEE Xplore. Restrictions apply.

