
1028 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 6, NOVEMBER 1992 

the given training data, it can possibly generalize under the same 
condition that (10) holds true. However, the size of a training set 
required for any empirical distribution to reflect appropriately the 
true underlying probability is another issue that is closely related to 
the Law of Large Numbers in statistics. 

In summary, our (10) is justified by mathematically rigorous argu- 
ment under the imposed condition of [2]. We agree that sufficiently 
many hidden neurons are required to satisfy that condition in general. 
If we have no a priori knowledge of the data generation mechanism, 
infinitely many neurons may truly be necessary to model every 
possible underlying probability. However, if we have available any 
knowledge to restrict possible probability distributions to a small 
hypothesis class, then finitely many hidden neurons may suffice to 
model every member of the class. Therefore, evaluation of the number 
of neurons required to provide the network with sufficient function 
capacity is relative to the a priori knowledge available in a specific 
situation, and is not considered to be clarified in general. Thus our 
feeling is that we do not have any definite answer to the question 
whether our required condition is impractical or not. 
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Comments on “Dynamic Programming Approach to 
Optimal Weight Selection in Multilayer Neural Networks” 

Barak A. Pearlmutter 

In the above paper, Saratchandran’ presents an efficient algorithm 
using dynamic programming to find weights which load a set of 
examples into a feedforward neural network with minimal error. 
.YP-complete problems have been reduced to special cases of this 
loading problem [2], [3], so an efficient algorithms implies P = XP, 
a significant result indeed. 

Regrettably a confusion lies buried in the paper’s notation. Since 
u ’ ( k )  is used to represent the weights from layer k to layer k + 1, it 
might seem reasonable to use U’* [ k )  to represent the setting of these 
weights that minimizes the error. The author proposes to compute 
~ ‘ ( n  - l),  then ul*(n - 2) ,  etc., thus computing optimal settings 
for all the weights. However, us*(k)  is a function of the settings 
of the weights at all the other layers, and should really be written 
w * ( k . w ( l )  . . .  . , w ( k  - 1). w ( k  + 1) ... . . ul(n - I ) ) .  
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This makes the problem with the algorithm clear. First the weights 
w ( n  - 1) are set optimally. Then the weights w ( n - 2 )  are changed to 
optimal. At this point us (n -  1) is no longer optimal, as the assumption 
made when their optimal setting was calculated, namely that the unit 
states ~ ( n  - 1) are held constant, which necessitates holding w ( l ) ,  
. . . , u>(n - 2 )  constant, has been violated. 
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Authors’ Reply 

P. Saratchandran 

The primary concern of Dr. Pearlmutter is that the algorithm 
proposed in my paper implies P = although nowhere in the 
paper is such a claim made. In fact the algorithm only proposes an 
iterative layer by layer approach to training a multilayer feed forward 
network without claiming that it scales polynomially with problem 
size. 

The concern seems to be due to some misunderstandings about 
the implementation of dynamic programming based algorithms. Such 
details were not included in the paper as they are well documented 
in text books [1]-[3] on dynamic programming. The weights w*(..) 
derived in the paper are for each quantized state of y(..) and are not 
global optimal weights. Following explanation of implementation will 
further clarify any misgivings that the algorithm runs in polynomial 
time. 

Because neuron activation functions are nonlinear the outputs y 
for every layer has to be quantized [1]-[3] and the optimal weights 
U ) *  computed for each quantized state. Thus for the ( n  - 1)th layer, 
corresponding to each quantized state of y ( n  - l),  we can compute 
a w * ( n  - 1) and a minimum error I ( y ( n  - 1)) using (8) and (9) in 
the paper. Store these in a table. 

At ( n  - 2)nd layer, for each quantized state of y ( n  - 2 ) ,  we repeat- 
edly calculate E* ( n  - 2 )  and the error I(y( n - 2 ) )  corresponding to 
every quantized state of y ( n  - 1) using the appropriate c * ( n  - 1) in 
(12) in the paper. Thus for every quantized y ( n  - 2 )  we will have as 
many { w * ( n  - 2 ) .  u * ( n  - 1)) as the number of states of y ( n  - 1). 
For each state of y(71 - 2 )  pick only that w * ( n  - 2),  w * ( n  - 1) 
which resulted in the lowest error I ( y ( n  - 2))  and store them in a 
table as we need them for the calculation of 7r$*(n - 3 ) .  Continue 
this procedure until we reach the first layer. 

At the first layer there is no need to quantize y ( 1 )  as these are 
the inputs to the network and consequently known. So we only need 
compute the us*(l) and the error I ( y ( 1 ) )  corresponding to every 
quantized state of y(2) using the appropriate { ~ * ( 2 ) .  . . . , us*(n - 
2 ) .  xl*(n - 1)} from the table generated at the 2nd layer. The 
u , * ( l )  that resulted in the lowest error I(y( 1)) and the corresponding 
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