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Abstract

A striking feature of many sensory processing

problems is that there appear to be many more

neurons engaged in the internal representations

of the signal than in its transduction. For ex-

ample, humans have about 30,000 cochlear neu-

rons, but at least a thousand times as many neu-

rons in the auditory cortex. Such apparently

redundant internal representations have some-

times been proposed as necessary to overcome

neuronal noise. We instead posit that they di-

rectly subserve computations of interest. Here

we provide an example of how sparse overcom-

plete linear representations can directly solve

difficult acoustic signal processing problems, us-

ing as an example monaural source separation

using solely the cues provided by the differential

filtering imposed on a source by its path from

its origin to the cochlea (the head-related trans-

fer function, or HRTF). In contrast to much pre-

vious work, the HRTF is used here to separate

auditory streams rather than to localize them in

space. The experimentally testable predictions

that arise from this model—including a novel

method for estimating a neuron’s optimal stim-

ulus using data from a multi-neuron recording

experiment—are generic, and apply to a wide

range of sensory computations.
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1 Introduction

Animals in nature confront an acoustic environ-

ment consisting of sounds from a rich, indeed

often bewildering, combination of sources. Sur-

vival depends on responding appropriately to

potential threats, food sources and mates (e.g. at

a cocktail party), while at the same time ignor-

ing the many irrelevant sound sources that may

constitute the majority of the acoustic energy re-

ceived. Source separation, or “stream segrega-

tion,” is therefore one of the central problems in

acoustic processing that organisms must solve.

Animals must confront many of the same chal-

lenges in solving this problem as do artificial

systems, and the insights gained from the one

can be applied to the other. However, little is

currently known about how animals solve this

problem (but see Fishman et al., 2004; Micheyl

et al., 2005), and no artificial system can solve it

in a general setting.

Animals exploit a variety of binaural and

monaural cues to separate acoustic sources

(Bregman, 1990). For example, two tones oc-

curring simultaneously are more likely to be

grouped together perceptually—i.e. perceived as

arising from the same source—than the same

notes occurring sequentially. Such grouping

makes sense under the assumption that the au-

ditory system is trying to discover the statisti-

cally independent causes of the acoustic signals

received at the ears (Bell and Sejnowski, 1995,

1997; Lewicki and Sejnowski, 2000; Simoncelli

and Olshausen, 2001); simultaneous onset of

two tones is unlikely to arise purely by chance,

so it is more parsimonious to assume that the

tones were caused by a single source (e.g. as

harmonics of a single fundamental frequency.)
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Many of the spectral, temporal and spatial cues

used for stream segregation can be interpreted

in this context.

A striking feature of this and many other sen-

sory processing problems is that there appear to

be many more neurons engaged in the internal

representations of the signal than in its trans-

duction. For example, humans have only about

30,000 cochlear neurons, but at least a thousand

times as many neurons in the auditory cortex.

Although such apparently redundant internal

representations have sometimes been proposed

as necessary to overcome neuronal noise, here

we posit that they contribute to computation.

In order to extract the behaviorally relevant

information embedded in natural acoustic envi-

ronments, animals must be able to separate au-

ditory streams originating from distinct acous-

tic sources (“cocktail party problem”). The audi-

tory cortex has orders of magnitude more neu-

rons than the cochlea, so many different pat-

terns of cortical activity may faithfully repre-

sent any given pattern of cochlear activity. We

propose that the cortex exploits this excess “rep-

resentational bandwidth” (Deweese et al., 2005),

or the excess degrees of freedom, by selecting

the sparsest representation within an overcom-

plete set of features. This model suggests how

this excess representational bandwidth can be

used for computation, instead of merely to over-

come neuronal noise as is usually assumed. We

illustrate this model by showing how sparse-

ness can be used to separate sources perceived

monaurally. The model makes testable predic-

tions about the dynamic nature of representa-

tions in the auditory cortex. Our results support

the idea that sparse representations may under-

lie efficient computations in the auditory cortex.

Our approach is to adopt a practical compu-

tational framework for the cocktail party prob-

lem, and then explore the testable implications

that follow. Here we describe a model of how the

auditory system can exploit one particular sort

of monaural segregation cue, namely the spec-

tral cues introduced by the differential filtering

imposed by the head-related transfer function

(HRTF). Note that in contrast to much previ-

ous work, the HRTF is used here to separate

auditory streams rather than to localize them

in space; our model assumes that the locations

of the sources has already been determined by

other mechanisms.

The model posits that the neural representa-

tion of an acoustic stimulus is overcomplete in

the sense that there are many more neurons

available than are needed to represent the stim-

ulus with high fidelity (Olshausen and Field,

1997; Lee et al., 1999; Lewicki and Sejnowski,

2000; Zibulevsky and Pearlmutter, 2001). Be-

cause the representation is overcomplete, there

are many patterns of neural activity that all

faithfully encode any given stimulus. We show

that constraining neural activity to be sparse se-

lects one of these representations, and that the

resulting pattern of neural activity solves the

source separation problem, even when multiple

sources are audible to only a single ear. The

framework is quite general, and can serve as

a starting point for understanding how cortical

circuits might exploit other sensory cues as well.

2 Methods

All programming was done in Matlab.

2.1 HRTF

The head related transfer function (HRTF) is

the filter imposed by the head and the de-

tailed shape of the ear on sounds received at

the cochlea. The HRTF depends on the spa-

tial position—both the relative azimuth and

elevation—of the source (Yost et al., 1996).

At some frequencies, the HRTF can attenuate

sound from one location by as much as 40 dB

more than from another (supplementary Fig-

ure 1A).

Although every individual has his or her

own HRTF, the basic characteristics of HRTFs

are similar across individuals. We used a

representative left human pinna HRTF down-

loaded from http://www.itakura.nuee.nagoya-u.

ac.jp/HRTF/ (Nishino et al., 2001).

2.2 Spectral basis for sources via

NMF

We tested our algorithm on mixtures of musi-

cal sources. We used non-negative matrix factor-
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ization (NMF) to obtain basis elements for each

source.

NMF is an algorithm for factorizing a data

matrix under an elementwise non-negativity

constraint (Lee and Seung, 1999). The original

data matrix is given as an n×m matrix V, each

column of which here contains the n data values

for one of m spectrogram segments. The data

matrix V is approximated by NMF as V ≈ QH

where the dimension of the factors Q and H are

n × r and r × m, respectively. The rank of fac-

torization, r, is chosen so nr + rm < nm, so as

to compress the original nm elements in the ma-

trix V into a smaller number of elements, nr in

Q plus rm in H. Each column of Q contains

one of the basis spectrograms, and the matrix

H represents the coefficients for reconstructing

the columns of the original data matrix V in

this basis. The Q matrices obtained by NMF

for each individual source were concatenated to

form an overcomplete source-space basis matrix

D̃ =
[

Q1 | Q2 | · · ·
]

. Each column of D̃ was

then filtered through each HRTF and the re-

sults concatenated to form the feature matrix,

D =
[

h1(t) ∗ D̃ | · · · | hN (t) ∗ D̃
]

.
In our experiments, the spectrograms in

the data matrix V were obtained from music

sounds, natural sounds, or speech sounds: com-

mercial audio CDs (instrumental solos, classi-

cal and jazz, one each on cello, clarinet, trum-

pet, harp, and harpsichord, for a total of five),

the audio CDs The Diversity of Animal Sounds

and Sounds of Neotropical Rainforest Mammals

(Cornell Laboratory of Ornithology, Ithaca, NY,

USA), and spoken poetry (Dylan Thomas, T. S.

Eliot, Frank O’Hara and William Butler Yeats

on the commercial audio CD Poetry speaks:

Hear great poets read their work from Ten-

nyson to Plath, Sourcebooks Inc., 2001, ISBN

1570717206), respectively. Samples of 100–150 s

were taken, stereo channels averaged, and the

signal down-sampled from the original 44.1 kHz

to 8 kHz. Log-scaled spectrograms were gener-

ated using a custom Matlab routine (available

upon request) with a bin size of 5 ms and 75

frequency bands ranging from 55–3,951 Hz in

steps of 1/12 octave. Each column of V held

a strip of spectrogram, yielding a dimensional-

ity of n = 75, and m = 5,000 samples were

used for the training. Note that the training

samples were distinct from those used for the

testing. Specifically, we used 10,000 samples to

assess the representational sparseness achieved

by the NMF basis (Figure 2), and 20,000 random

combinations of three sources (using the 10,000

samples in Figure 2) to assess separation perfor-

mance (Figure 4).

Each NMF run consisted of 500 iterations

with 10 restarts from random initial conditions,

with the restart that yielded the minimum total

error chosen. The factorization rank was r = 15.

Concatenating the five Q matrices for the five

instruments yielded a dictionary of 75 basis el-

ements, each of which was filtered by each of

three different HRTFs, resulting in a feature

matrix D with 225 columns. The source loca-

tions were randomly chosen but 90◦ apart from

each other in the simulations (e.g.in Figure 3 the

three sources were located on your left, center

and right, corresponding to the HRTFs for az-

imuth −90◦, 0◦and 90◦respectively, with zero el-

evation; see also supplementary Figure 1B). The

analyses on the natural sound and speech sound

were performed in a similar manner, with 5,000

training samples for each data matrix V.

2.3 Minimization

Pseudoinverses (L2-norm minimization) were

computed with Matlab’s pinv routine, which

uses an algorithm based on singular value de-

composition (SVD). The linear programming

problem (Eq. 10) was solved using the Matlab

Optimization Toolbox linprog routine. We did

not impose a non-negativity constraint on the

coefficients. As a result, the dense solution con-

sists of negative coefficients as well as positive

ones, whereas all the substantially non-zero el-

ements are positive for the sparse solution. Fig-

ure 6 shows the absolute values of the dense so-

lution coefficients.

The linear programming problem given in

Eq. 10 can be sensitive to noise. We therefore

solved an augmented version of this that in-

cluded a noise model. In particular, we assumed

that the total amount of noise was bounded.

Thus Eq. 10 was reformulated as:

minimize
c

‖c‖1 subject to ‖Dc − y‖p ≤ β (1)

hrtf source.tex 3 Rev: 1.326, Exp, 2006/06/07
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where β is proportional to the noise level and

with p = 1, 2, or ∞. Letting β → 0 is equivalent

to assuming that the noise is very small, and

the solution converges to the zero-noise solution,

Eq. 10.

The Gaussian noise case, p = 2, can be

solved by semidefinite programming methods

(Fletcher, 1985). Both p = 1 and p = ∞ can

be solved using linear programming. All ap-

proaches yield qualitatively similar results.

The solutions presented here all used p = 1.

For this case, noise vectors e+ and e− are intro-

duced and included in the optimization, allow-

ing Eq. 1 to be rewritten in standard form:

c+, c−, e+, e− ≥ 0

Dc+ − Dc− + e+ − e− = y
[

1 · · · 1
]

e+ +
[

1 · · · 1
]

e− ≤ β

(2)

We typically examined four different noise lev-

els (log10‖y‖1/β = 1, 2, 3, 4), and selected the one

with the best separation performance on aver-

age as the result (Figures 4 and 5).

SNRs were calculated as the reciprocal

of the average across sources of 〈(xi(t) −
x̂i(t))

2〉/〈xi(t)
2〉 where xi(t) is the original spec-

trogram of the ith source, x̂i(t) is its estimate

when recovered from the mixture, and the av-

erage 〈·〉 is over time.

To measure the degree of sparse representa-

tions by NMF basis elements (Figure 2) and

its relation to the separation performance (Fig-

ure 4), we introduced a sparseness index, defined

as the number of non-zero elements in the pres-

ence of a single source divided by the dimen-

sion size. This index is unity for a dense rep-

resentation, and approaches zero as the repre-

sentation becomes sparser. The noise level was

log10‖y‖1/β = 1 in Figure 2B, resulting in the re-

construction SNR of 18.3±3.8, 16.0±3.0, 18.0±3.6
(median ± interquartile range in dB) for music,

natural sound, and speech ensembles, respec-

tively.

2.4 Estimation of linear encoders
and decoders

Given a set of stimuli yk (for k = 1, 2, . . . ) and

the corresponding responses ck generated us-

ing Eq. 10, the optimal linear decoding filter D̂

was estimated by solving the following regres-

sion problem:

minimize
D̂

∑

k

∥

∥

∥
yk − D̂ck

∥

∥

∥

2

2

,

where ‖·‖2 denotes the L2 (Euclidean) norm.

Similarly, the optimal linear encoder Ê was ob-

tained by solving the following equation:

minimize
Ê

∑

k

∥

∥

∥
Êyk − ck

∥

∥

∥

2

2

.

Note that we used a fraction of the elements in

ck for the linear filter estimation, and showed

the average results in Figures 7 and 8 over 200

random samplings of neurons. Also note that

the ith column of D̂ and the ith row of Ê corre-

spond to the optimal linear decoder and encoder

for the ith neuron, respectively.

In Figure 7, we used a 1, 168 × 3, 600 feature

matrix D, each column of which held a feature

spanning over 16 time bins (96 ms), with a bin

size of 6 ms and 73 frequency bands ranging be-

tween 55–3,520 Hz in steps of 1/12 octave. As

the original feature of a target neuron, we chose

the one obtained from cello ensembles, and thus

we used cello sounds as input stimuli in the sim-

ulation.

2.5 Asymmetry of sparse represen-
tations

To illustrate the asymmetry of linear encoding

and decoding in the framework of our model, we

ran simulations in 25 dimensions with 75 neu-

rons. In the simulations, the 3-fold overcomplete

features (a 25 × 75 feature matrix D) were first

generated randomly on the unit hypersphere.

Neural activities for sample stimuli drawn from

a Gaussian distribution were then determined

by Eq. 10.

For simulated single unit data (Figure 8A),

we computed the mutual information I(c, s) be-

tween the simulated neural responses c and

stimulus s using the I(c, s) = H(c) − H(c|s) =
H(c), where H(c) is the response entropy and

H(c|s), the conditional of the response given the

stimulus, is zero because the relation between

Rev: 1.326, Exp, 2006/06/07 4 hrtf source.tex
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stimuli and responses was deterministic. Thus

the mutual information between the single neu-

ron and the stimulus was just equal to the re-

sponse entropy, which we estimated by direct

binning from the histogram of neural responses.

We compared this information to either: the mu-

tual information between the optimal linear es-

timate of the response given the stimulus and

the actual stimulus (encoding); or between the

optimal linear estimate of the stimulus given

the response and the actual response (decoding).

For these information estimations we used the

Gaussian approximation to bound the entropy

of the reconstruction error (Bialek et al., 1991).

We then normalized these linear information es-

timates to full mutual information to obtain the

reconstruction quality,

1 −

〈

linear estimate of mutual information

mutual information

〉

.

For multi-unit data (Figure 8B), the computa-

tion of the full mutual information (rather than

the linear approximation) was computationally

intractable. We therefore computed the follow-

ing simpler measure of the reconstruction qual-

ity of the models:

1 −

〈

‖reconstruction error‖2

‖response or signal‖2

〉

,

where ‖·‖2 denotes the L2 norm and 〈·〉 the mean

over data. Note that the measure is based on

the relative length of the model errors, and that

it gives zero for pure noise and one for perfect

reconstruction.

2.6 Context dependence of STRFs

In Figure 10, for demonstration purposes, we

used a 1, 168× 3, 600 feature matrix D (the same

one as in Figure 7) and used two different sets of

300 active features (i.e. 1, 168×300 packed matri-

ces Dk; see Appendix A.3) to estimate the STRFs

for the two different contexts. Note that some

of the features were active in both contexts (in-

cluding the one shown in Figure 10A) whereas

others only in either context.

3 Results

Our main goals are to explore a model of com-

putation with sparse representations, and to

generate new experimentally testable predic-

tions from this model. To make our model con-

crete, we consider a specific computation—a spe-

cial case of the monaural cocktail party prob-

lem in which the head-related transfer function

(HRTF) provides the critical cue for disentan-

gling sources. We focus on this special case not

because it is of central importance from a psy-

chophysical perspective—in a general setting,

the HRTF is typically just one of many cues, and

often not the most important—but rather be-

cause this problem provides a convenient way to

illustrate the key predictions. The same sparse

framework can be generalized to exploit other

cues for source separation, and to other sensory

processing problems (e.g. vision) as well.

The presentation is organized as follows. First

we define the particular source separation prob-

lem we consider, in which there are several

sources and a single ear. Next we show how

a sparse overcomplete representation, like that

seen at the cortical level in the auditory system,

can be used to separate the sources. Finally,

we identify experimentally testable predictions

of the model.

3.1 Problem formulation

We have all experienced the basic cocktail party

problem as a part of everyday life: we stand in

a room full of people chatting, chairs scraping,

fans humming and so forth, and strain to un-

derstand the words of a single interlocutor. This

familiar but challenging scenario is interesting

precisely because it tests the limits of what we

humans can achieve. The cocktail party is, how-

ever, just an extreme example of a more general

problem that the auditory system constantly

confronts. It is rare that we can listen to an

acoustic source without interference from other

sources, yet our auditory system filters the in-

terfering sources out of our conscious perception

so effectively that we are often almost unaware

of them. The apparent effortlessness with which

we solve the cocktail party problem is deceptive,

and is a testament to the effectiveness of our

hrtf source.tex 5 Rev: 1.326, Exp, 2006/06/07
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auditory system. Indeed, the problem of back-

ground noise represents one of the main factors

limiting the widespread practical adoption of ar-

tificial speech recognition systems.

The auditory system uses a wide variety

of psychophysical cues to segregate auditory

streams (Bregman, 1990), including both binau-

ral and monaural cues. Many monaural cues

have been identified, such as common onset time

or comodulation of stimulus power in different

parts of the spectrum.

For simplicity we focus here on just one set

of cues: those provided by the differential fil-

tering imposed on a source by its path from its

origin in space to the cochlea. This filtering is

caused both by the head and the detailed shape

of the ear (the head-related transfer function, or

HRTF), and by the environment on sources at

different positions in space (Yost et al., 1996).

The HRTF is important for generating a three-

dimensional experience of sound, so that acous-

tic sources that bypass the HRTF (e.g. those pre-

sented with headphones) are typically perceived

unnaturally, as though arising inside the head

(Wightman and Kistler, 1989; Kulkarni and Col-

burn, 1998). Whereas the importance of the

HRTF in sound localization has been studied ex-

tensively (Knudsen and Konishi, 1979; Wight-

man and Kistler, 1989; Wenzel et al., 1993; Hof-

man and Opstal, 2002), its role in source sepa-

ration as such has not. In contrast to much pre-

vious work, the HRTF is used here to separate

auditory streams rather than to localize them in

space.

It is often reasonable to assume that sound ar-

riving from different locations should be treated

as arising from distinct sources. For the pur-

poses of the present paper, all sounds from a

given position are defined to belong to the same

source, and any sounds from a different position

are defined to belong to different sources. We

emphasize that although sound localization (the

process by which an animal determines where

in space a source is located) is related to source

separation (the process by which an animal ex-

tracts different auditory streams from a single

waveform), the two computations are distinct;

neither is necessary nor sufficient for the other.

Here we focus on the separation problem, and

assume that source localization occurs by other

mechanisms.

The particular source separation problem we

consider is as follows. Suppose there are N
acoustic sources located at known distinct posi-

tions in space, with xi(t) being the time course of

the stimulus sound pressure of the ith source at

its point of origin. Associated with each position

is a known filter given by hi(t). In what follows

we will refer to hi(t) as the HRTF, but in gen-

eral hi(t) will include not just the filtering of the

head and external ear, but also the filter func-

tion of the acoustic environment (reverberation,

etc.)

The signal y(t) at the ear is the sum of the

filtered signals,

y(t) =

N
∑

i=1

hi(t) ∗ xi(t) =

N
∑

i=1

x̃i(t) (3)

where ∗ indicates convolution and x̃i(t) = hi(t) ∗

xi(t) is the ith source in isolation following filter-

ing. (We can say that xi(t) is the ith source mea-

sured in source space, while x̃i(t) is the same

source measured in sensor space.) The organ-

ism’s goal in source separation is to recover the

underlying sources xi(t) from the signal y(t),
using knowledge of the directional filters hi(t).
For example, if xalice(t) and xbob(t) are speech

streams generated by two speakers (sources) Al-

ice and Bob at a cocktail party, then the goal

is to disentangle these two streams using the

only signal available, the sum y(t) = halice(t) ∗
xalice(t) + hbob(t) ∗ xbob(t). Note that the actual

spatial locations of the sources are not computed

during the separation; we do not address the lo-

calization problem in this paper.

The particular monaural version of this prob-

lem that we consider here is a special—more

difficult—case of the binaural (or, in artificial

systems, the multiple microphone) problem.

3.2 Neural representation for
source separation

How might a neural system solve the source sep-

aration problem described above? We begin by

assuming that each short segment (e.g. 5 ms) of

each acoustic source x̃i(t) (as it sounds at the

cochlea) is represented in the activities cij of a

Rev: 1.326, Exp, 2006/06/07 6 hrtf source.tex
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population of neurons indexed by components j
and source positions i,

x̃i(t) =
∑

j

cij dij(t), (4)

where dij(t) are stimulus features, i.e. elements

of a (not necessarily orthogonal, and possibly

overcomplete) linear basis. We will interpret the

neural activities cij as the spike rate of the cor-

responding neurons during each segment. The

signal y(t) is then given by

y(t) =
∑

ij

cij dij(t). (5)

We have introduced Eq. 5 as an analytic

model: given a stimulus y(t), find a set of fea-

tures dij(t) and neural activities cij that rep-

resent that stimulus; if the features span the

stimulus space, then such a representation will

always exist. Below we will focus on the case

where the feature set permits a sparse repre-

sentation, i.e. where only a few of the neural ac-

tivities cij are significantly nonzero. (Although

sparse might colloquially refer to the case where

most of the activities cij are exactly zero, here

we use a generalized notion of sparseness, com-

mon in the literature, that requires only that

most activities be close to zero.)

Eq. 5 assumes a linear relationship between

an auditory stimulus y(t) and its neural repre-

sentation in terms of features dij(t). The as-

sumption of linearity is common in both visual

and auditory physiology. For example, it is often

assumed that a population of neurons in corti-

cal area V1 represents a visual scene in terms

of a collection of oriented edges; in this case the

scene and the features in Eq. 5 would be rewrit-

ten as functions of spatial rather than temporal

coordinates, but the formulation would be oth-

erwise identical. Similarly, in auditory physi-

ology, stimuli are sometimes represented as a

weighted sum of basis elements such as moving

ripples (Kowalski et al., 1996; Klein et al., 2000);

in the context of Eq. 5, this implies assuming a

one-to-one correspondence between a basis ele-

ment (derived from the ripple basis) dij(t) and

the firing rate cij of a corresponding neuron.

In order to relate the neural representation

of the signal y(t) in Eq. 5 to the sources xi(t),
we further assume that each source can be ex-

pressed as a linear combination of (not neces-

sarily orthogonal) basis elements qj(t),

xi(t) =
∑

j

cij qj(t), (6)

where the basis elements qj(t) are related to the

features dij by convolution with each filter hi(t),

dij(t) = hi(t) ∗ qj(t). (7)

Combining these expressions, the signal y(t) re-

ceived at the ear is related to the sum of the fil-

tered sources by

y(t) =
∑

i

hi(t) ∗ xi(t)

=
∑

i

hi(t) ∗
(

∑

j

cij qj(t)
)

=
∑

ij

cij

(

hi(t) ∗ qj(t)
)

=
∑

ij

cij dij(t).

(8)

There are thus more features dij(t) in the

neural representation than there are basis el-

ements qj(t). In particular, if there are known

to be N sources, then there are N -fold more fea-

tures dij(t) than basis elements qj(t). As before,

Eqs. 5–7 represent an analytic model: given a

set of features dij(t) (or equivalently a set of ba-

sis elements qj(t) and position-dependent filters

hi(t)), and an input y(t), find an appropriate set

of neural activities cij .

The basis elements qj(t) reflect statistical cor-

relations within sources; each source typically

consists of several such elements. These ba-

sis elements can be thought of as an internal

model of the components of acoustic sources, in

the same way that edges might be thought of as

components of visual sources (objects). Because

the neural representation involves pre-filtering

with the HRTF (Eq. 7), the coefficient cij associ-

ated with feature dij(t) is then better thought

of as representing the hypothesis that an ele-

ment qj(t) is present at position i. In the same

way, neurons in the primary visual cortex can be
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thought of as representing the hypothesis (dij)

that an oriented edge (qj) is present at a par-

ticular position (i) in the visual field. In other

words, the elements qj(t) reflect only the proper-

ties of the stimulus, whereas the features dij(t)
arise from interaction of these elements with the

sense organs.

A population of neural activities satisfying

Eqs. 5–7 has effectively solved the source sep-

aration problem, since a given source i can be

reconstructed merely by summing over all neu-

rons associated with position i. This formula-

tion therefore recasts the source separation into

a new problem: finding the appropriate neural

activities cij . Such a representation, if it could

be found, is especially appealing because it per-

mits the sources to be reconstructed (by Eq. 6)

directly in terms of the stimulus elements qj(t)
as they sound at the source (i.e. prior to filter-

ing); the reconstruction is therefore invariant to

changes in stimulus position. In the next section

we will show that sparseness provides the key to

specifying the appropriate representation.

For notational and computational conve-

nience we discretize time and rewrite Eq. 5 in

matrix form (using bold to indicate vectors and

matrices):

y = Dc, (9)

where y is a column vector whose Nrow ele-

ments correspond to the discrete-time sampled

elements y(tk), c is a column vector of length Ncol

representing the complete neural activity pat-

tern cij , and D is an Nrow × Ncol matrix whose

columns dij hold the features with elements

dij(tk).

3.2.1 Sparse neural representation of

sources

Source separation thus requires finding the neu-

ral activities c such that the neural representa-

tion represents the sources xi as closely as pos-

sible. We assume that the neural representation

is overcomplete (Riesenhuber and Poggio, 2000;

Olshausen and Field, 1997), i.e. that the num-

ber of neurons (features) is large (Ncol > Nrow).

In this case, many different neural activity pat-

terns c could represent the stimulus y equally

well (Figure 1A). However, the goal is not merely

A B

C D

feature 3
feature 2

feature 1

1

2
3

2

3

Dense representation

Sparse representation

firi
ng

 ra
te 2

1

0
neuron number1  2  3

Dense
Sparse

data

Figure 1: Overcomplete representation in

two dimensions. (A) Three non-orthogonal

feature vectors dij in N = 2 dimensions con-

stitute an overcomplete representation, offer-

ing many possible ways to represent a data

point y with no error. (B) The conventional

solution is given by the pseudoinverse, which

yields a dense representation because it mini-

mizes the squared sum of the neural activity,
∑

ij c2
ij . This representation invokes all fea-

tures about evenly. (C) The sparse solution in-

vokes at most N = 2 features because it mini-

mizes
∑

ij |cij |. (D) Comparison of neural activ-

ity for the two cases. For the dense representa-

tion, all three neurons participate about equally,

whereas for the sparse representation activity is

concentrated in neuron 2.

to represent the stimulus y, but to find a repre-

sentation in which the underlying sources xi are

apparent and from which they can be readily re-

covered.

Since the neuronal population does not have

access to the sources themselves, but only to

their sum y, not enough information is avail-

able to recover the sources uniquely. The source

separation problem is thus ill-posed. (In the

same way, knowing that the sum of two scalars

a and b is 12 is not sufficient to recover a
and b, and any choice for a and b that satis-

fies a + b = 12 is a possible solution.) The

problem can be made well-posed by adding ad-
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ditional constraints (regularizers) on the re-

sponses, as is often done in computational vision

(Poggio et al., 1985). Here we consider a sparse-

ness regularizer on the neural representation

(Chen et al., 1998; Lee et al., 1999; Lewicki

and Sejnowski, 2000; Zibulevsky and Pearlmut-

ter, 2001; Vinje and Gallant, 2000; Simoncelli

and Olshausen, 2001; Hahnloser et al., 2002;

Bell and Sejnowski, 1997; Olshausen and Field,

1996, 1997; Olshausen and O’Connor, 2002). In

neural terms, this sparseness assumption cor-

responds to representing the acoustic stimulus

y in terms of the minimum number of spikes

(Figure 1C), a biologically appealing constraint

which leads to an energy-efficient representa-

tion (Laughlin and Sejnowski, 2003; Levy and

Baxter, 1996). Thus we assume that the neural

representation c satisfies (see Appendix A.1):

minimize
∑

ij

|cij | subject to y = Dc. (10)

Eq. 10 specifies a linear programming problem

with a single global optimum. Formally, the so-

lution minimizes the L1 norm ‖c‖1 =
∑

ij |cij |
of the solution vector. In practice, the problem

we consider allows for reconstruction noise (see

Eq. 1 in Method 2.3).

3.2.2 Dense neural representation of

sources

An alternative regularizer is that implicit in the

pseudoinverse (Strang, 1988), corresponding to

the usual least-squares solution (see Appendix

A.1),

minimize
∑

ij

c2
ij subject to y = Dc. (11)

The pseudoinverse finds the solution c that min-

imizes the L2 norm, i.e. the squared neural ac-

tivity
∑

ij c2
ij (Figure 1B). However, it is not obvi-

ous why it would be useful for the brain to min-

imize this quantity, which has units of spikes-

squared, rather than some other quantity (such

as spikes; see below). Moreover, we show in the

next section that it fails in practice to separate

the sources successfully.

Music Natural Sounds Speech[Hz]
3520

880

220

55 25 50 75
NMF basis number 0     Amplitude    1

Pr
ob

. d
en

sit
y

0.3

0.2

0.1

0
Sparseness index

0 0.5 1.0

A

B

Figure 2: Non-negative matrix factorization

(NMF) can be used to find the parts of

sound ensembles. (A) NMF basis elements for

three sound classes (music, natural sounds, and

speech) were aligned in columns by the peak fre-

quency. Note that power is concentrated in the

fundamental frequency, but higher harmonics

are clearly visible. Also note that each column,

which reflects statistical correlations present in

the sources, is an example of qj(t) defined in

Eq. 6; it is the filtered versions dij(t) that form

the neural representation in Eq. 7. (B) The

ability of the NMF bases in (A) to represent

sounds in a sparse model is quantified in terms

of the “sparseness index,” defined as the number

of non-zero elements in the presence of a sin-

gle source divided by the dimension size. This

index is unity for a dense representation, and

approaches zero as the representation becomes

sparser. The distribution of the “sparseness in-

dex” was 0.61 ± 0.27, 0.64 ± 0.17, and 0.49 ± 0.13
(median ± interquartile range) for music, natu-

ral sounds, and speech, respectively, over 10,000

test samples; see Methods for details.

3.3 Separation of harmonic
sources

Successful source separation based on Eq. 10 re-

quires that two conditions be satisfied. First,

the sources must be sparsely representable, as

is the case with natural auditory stimuli (At-

tias and Schreiner, 1997; Lewicki, 2002; Klein

et al., 2003; Smith and Lewicki, 2006). Sec-

ond, the sources must have spectral correlations
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matched to the HRTF. We found that the model

was able to separate acoustic sources consist-

ing of mixtures of music, natural sounds and

speech.

3.3.1 Finding a feature set

We used nonnegative matrix factorization

(NMF) to generate a set of basis features from

spectrograms obtained from samples of solo in-

strumental music, natural sounds and speech

(Figure 2). NMF is an algorithm for factoriz-

ing a data matrix—a matrix whose columns con-

tain the snippets of solos—under non-negativity

constraints (Lee and Seung, 1999). In contrast

to some other decomposition approaches, such

as principal component analysis (PCA), NMF of-

ten yields representations in which the elements

are fairly local, and which can be interpreted as

“parts.”

When applied to music, NMF typically yielded

elements suggestive of musical notes, each with

a strong fundamental frequency and weaker

harmonics at higher frequencies. In many cases,

listeners could easily use timbre to identify the

instrument from which a particular element was

derived. When applied to sounds from other

ensembles (natural sounds and speech), NMF

yielded elements that had rich harmonic struc-

ture, but it was not in general easy to “inter-

pret” the elements (e.g. as vowels). Nonethe-

less these elements captured aspects of the sta-

tistical structure of the underlying ensemble of

sounds, and led to sparse representations of the

ensembles (Figure 2B).

The choice of NMF in this context was merely

a matter of convenience; we could have used

any basis that captured the spectral correla-

tions in the sources and permitted a sparse rep-

resentation. Finding good overcomplete dictio-

naries from samples of a stimulus ensemble is

a subject of ongoing research (Kreutz-Delgado

et al., 2003). We do not imagine that NMF

is the “algorithm” by which features are es-

tablished in real neural circuits—such features

must surely arise through a complex interac-

tion of genetic and environmental cues. We

need not, therefore, expect to find a precise cor-

respondence between the features obtained by

NMF and those observed in the auditory cor-

tex. In this respect our results complement pre-

vious work on finding the features underlying

auditory or visual scenes (Olshausen and Field,

1997, 1996; Lewicki, 2002; Bell and Sejnowski,

1997; Schwartz and Simoncelli, 2001); the em-

phasis here is not on the elements themselves,

but rather on how they work together to form a

representation that separates sources.

3.3.2 Separation

To test the model’s ability to separate sources,

we generated digital mixtures of three sources

positioned at three distinct positions in space

(Figure 3). On the left column are the spectro-

grams of the sources at their origin. Two of the

sources (a harp playing the note “D”, center and

bottom) were chosen to be identical; this exam-

ple is thus particularly challenging, since the

only cue for separating the sources is the filter-

ing imposed by the HRTF.

Separation was nevertheless quite successful

(compare left and right columns). These results

were typical: whenever the underlying assump-

tions about the sparseness of the stimulus were

satisfied, sources consisting of mixtures of mu-

sic, natural sounds or speech were all separated

well (Figure 4). Separation worked particu-

larly well for mixtures of sparsely representable

sources (i.e. smaller sparseness index values),

whereas it did not work for sources that were

not sparsely represented (i.e. larger sparseness

index values.) Figure 5 shows that separation

without differential pre-filtering by the HRTF

was unsuccessful, as was separation using the

Gaussian prior instead of the sparseness prior

(dense representation.)

The neural representations underlying sepa-

ration provide insight into these results. Fig-

ure 6A shows the representations of each of the

three sources (the same as in Figure 3) pre-

sented in isolation. In each panel, the activity

in a population of 225 neurons (corresponding

to the 225 features dij = hi ∗ qj) is indicated by

the intensity of points on a 15 × 15 grid. Since

the sources occupy three positions i, there are

three copies of the basis qj in each panel (cor-

responding to the three filters hi.) The activ-

ity patterns are sparse; only a relatively small

number of units are active in each representa-
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tion. Note that because the middle and the right

sources (source 2 and 3, respectively) in this ex-

ample were chosen to be identical, the middle

and right neural representations differ only by

a shift.

The procedure for recovering a source from

such a representation is straightforward: the

estimate of the left source (source 1) is sim-

ply the summed activity of the left third of

the neurons—those representing features pre-

filtered by the HTRF corresponding to the left-

most position in space; and likewise for the mid-

dle and right thirds. The HRTF can thus be

seen as a kind of “tag” for grouping together el-

ements from a single source. This suggests di-

viding source separation into two conceptually

distinct steps (although in practice the steps oc-

cur simultaneously.) In the first step, the stimuli

are decomposed into the appropriate features.

In the second step, the features are tagged and

bundled together with other features from the

same source. It is for this bundling step that the

HRTF along with the prior knowledge of souce

locations is essential.

The failure of the dense representation to sep-

arate sources (Figure 4) results from a failure

of the first step. Instead of decomposing the

sources into a small number of features, the

dense representation (Figure 6C) assumes that

each instrument contributed about equally to

the received signal, and so finds a representa-

tion in which a large fraction of neurons are ac-

tive. That is, instead of “explaining” the sources

in terms two harps and a trumpet, the dense

representations also finds some clarinet, some

cello, etc., at all positions. This is intrinsic

to the dense solution, since it finds the “mini-

mum power” solution in which neural activity is

spread among the population (Figure 1B).

The failure of even the sparse approach when

the spectral cues induced by the HRTF are ab-

sent (Figure 5, leftmost point showing 0-degree

separation ) results from a failure at the second

step. That is, the sparse approach finds a use-

ful decomposition at the first step even without

the HRTF, but in the absence of HRTF cues the

active features are not tagged, and so the fea-

tures cannot be assigned appropriately to dis-

tinct sources. Other psychophysical cues rel-

evant for source separation, such as common

InputOriginal

Source 1

Filtered

h1

Output
xi xi = hi xi* y =      xi xi  = cij qj

^ Σ
j

~ Σ ~

Source 2

Source 3

h2

h3

i

Figure 3: Separation of three musical

sources. Three musical instruments at three

distinct spatial locations were filtered (by

h1, . . . ,h3, respectively) and summed to produce

the input y, and then separated using a sparse

overcomplete representation to produce the out-

put. Note that two of the sources (a harp play-

ing the note “D”, center and bottom) were cho-

sen to be identical; this example is thus particu-

larly challenging, since the only cue for separat-

ing the sources is the filtering imposed by the

HRTF. Nevertheless, separation was good (com-

pare left and right columns.)

onset time, might provide alternative or addi-

tional tags in this same framework. A more

general formulation of source separation might

allow tagging on longer time scales, so that a

feature active at one moment might be more (or

less) likely to be active the next, reflecting the

fact that sources tend to persist, but we do not

pursue that approach further here.

3.4 Experimental predictions

Our model of sparse representations makes at

least three experimentally testable predictions.
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Figure 4: Performance of different separa-

tion approaches with three sources. The

separation performance (SNR across sources) is

shown as a function of the sum of the “sparse-

ness index” of the three sources (average over

20,000 sample sets). Note that sparse prior

(black) always outperforms dense prior (gray),

and that excellent separation was achieved es-

pecially when the sources are sparsely repre-

sentable. Also note that the model does not de-

pend strongly on choosing the basis carefully, as

demonstrated by the good performance of the

“combined” example in which a concatenated ba-

sis was taken from all the ensembles.

3.4.1 Optimal feature estimation requires

multi-neuron recording

In this model, the firing rate of a given neuron

{i j} is maximized when there is a perfect match

between the stimulus and that neuron’s feature,

i.e. when y = dij . Since the feature dij is used

in the linear reconstruction of the stimulus from

the neural activities (Eq. 5), one might imagine

that the optimal stimulus (i.e. the stimulus that

maximizes the firing rate) can be obtained by es-

timating the optimal linear decoder of the target

neuron considered alone. Experiments based on

this idea have shown that the optimal linear de-

coder can sometimes drive neurons in the audi-

tory cortex to fire vigorously (deCharms et al.,

1998).

Surprisingly, this model predicts that the lin-

Angle between the sources [degree]
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ion

 pe
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rm
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Sparse
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Figure 5: Separation performance for dif-

ferent source locations. Using a typical

example of three novel stimuli (trumpet and

two same harp), separation performance (y-axis)

was examined with all the possible combina-

tions of the three sources (from 0 to 120 de-

grees apart; x-axis). The average performance is

shown here under either sparse (black) or dense

(gray) prior. Note that separation was unsuc-

cessful at angle zero since we cannot exploit dif-

ferential filtering, whereas the performance gets

better as the sources get further apart.

ear estimate of the decoder obtained in this way

is not the optimal stimulus, even though the op-

timal decoder is linear. Instead, finding the op-

timal stimulus requires recording from all the

neurons involved in the representation. This fol-

lows from the fact that we have assumed that

the features are not orthogonal (see also Ap-

pendix A.2). Note that in this model, optimal

decoding (Eq. 5) need not take neural correla-

tions into account, even when they are present.

This first prediction is illustrated by a simu-

lation (Figure 7). The y-axis shows the firing

rate of a target neuron (normalized to its max-

imum firing rate) in response to the presenta-

tion of the stimulus that matches the optimal

linear decoder constructed by recording the ac-

tivity of a target neuron and a variable number

of other neurons. When the optimal linear de-

coder is estimated from only the target neuron,

the firing rate is sub-maximal. As the number

of neurons used to estimate the optimal linear
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Source 1

Sparse Dense

A

B C

Source 2 Source 3

0     ( log-scale)     +

Normalized 
Firing Rate

Figure 6: Neural representations underly-

ing source separation. Each panel shows the

activity of a population of 225 neurons, corre-

sponding to the 225 features dij = hi ∗ qj . The

intensity of each dot in the 15 × 15 grid is pro-

portional to the log of the firing rate of each

neuron. Since the sources occupy three posi-

tions i, there three copies of the basis qj in each

panel (corresponding to the three filters hi.) The

copies are arranged from left to right for conve-

nience, and separated by vertical lines. How-

ever, the arrangement is for purposes of illustra-

tion only; we do not mean to imply any spatial

organization of sources within the cortex. The

sources are the same as in the previous figure.

(A) Sparse representations of the three sources

(corresponding to the original spectrograms in

Figure 3) presented in isolation. Only a rela-

tively small number of units are active in each

panel. (B) Sparse representation of the mixed

sources (input spectrogram in Figure 3.) Note

that activity is approximately the sum of the ac-

tivities of the isolated sources in (A). (C) Dense

representation of the mixed sources. Note that

most units are active.

decoder is increased (x-axis), the response of the

target neuron converges to unity, indicating that

the optimal decoder has converged to the target

neuron’s feature.

Figure 7 represents a novel and testable pre-

diction of the model: jointly estimating the op-

timal linear decoder from a population of neu-

rons should yield a stimulus that is closer to op-
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Original feature

Fraction used: 0.1 0.5 10.02

Figure 7: Prediction 1: Stimulus optimiza-

tion requires multi-neuron recording. The

y-axis shows the simulated firing rate of a target

neuron (normalized to its maximum firing rate)

in response to the presentation of the optimal

linear decoder constructed by recording the ac-

tivity of a target neuron and a variable number

of other neurons. When the optimal linear de-

coder is estimated from only the target neuron,

the firing rate is sub-maximal. As the number

of neurons used in this simulation to estimate

the optimal linear decoder is increased (x-axis),

the response of the target neuron converges to

unity, indicating that the optimal decoder has

converged to the target neuron’s feature.

timal. Moreover, it also leads to a novel exper-

imental approach for finding the optimal stim-

ulus. Note that although in principle the activ-

ity of all neurons involved in the representation

must be recorded, in practice the activity of even

a few can be useful. With modern techniques

(e.g. tetrodes) for isolating the activity of several

nearby neurons, this approach might be practi-

cal.

3.4.2 Linear decoding and nonlinear en-

coding

A second testable prediction of the model is that

there should be an asymmetry between encod-

ing and decoding: the optimal encoding func-

tion is nonlinear but the optimal decoding func-
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tion is linear. Here decoding refers to the pro-

cess of “reading out” a neural representation

(e.g. by forming an estimate or reconstruction

of the stimulus), whereas encoding refers to the

process by which the nervous system constructs

a pattern of neural activities from a stimulus.

Surprisingly, however, this asymmetry emerges

only for populations of neurons; the optimal lin-

ear encoder and decoder of an isolated neuron

perform about equally, and both underperform

the optimal nonlinear decoder (Figure 8).

The fact that optimal decoding of a neuronal

population is linear—i.e. that the optimal lin-

ear decoder of the neuronal population response

provides perfect reconstruction of the stimulus

under the model, so no nonlinear model can do

better—is a direct consequence of our funda-

mental assumption (Eq. 5) that the neural rep-

resentation is a linear combination of features.

The linearity of neural decoding does not im-

ply that the neural encoding function—the in-

verse transformation from the stimulus to the

response—need be linear; and in general it is

not.

Sparseness induces a nonlinear encoding

function; more precisely, it induces a piecewise

linear encoding function (Figure 9). Sparseness

implies that only at most Nrow out of the possi-

ble Ncol features dij are active in the representa-

tion of a particular stimulus; the precise subset

of active neurons changes for different stimuli.

Piecewise linearity arises because the encoding

function is linear for all stimuli that activate the

same subset of features, but changes for differ-

ent subsets (see also Appendix A.2). Note that

not just any nonlinear function can be imple-

mented. For example, any saturating nonlin-

earities must be introduced by a preprocessor,

since doubling the stimulus y necessarily dou-

bles the neural representation c, i.e. y = Dc im-

plies 2y = D(2c).
The prediction that there is an asymmetry be-

tween the linearity of the decoding function and

the nonlinearity of the encoding function can be

tested experimentally (Figure 8). Given an en-

semble of stimulus-response pairs (i.e. the neu-

ral responses to an ensemble of sounds) obtained

from a population of neurons, the model pre-

dicts that a linear stimulus reconstruction ap-

proach (i.e. a decoding model) will outperform a

linear “forward” (i.e. encoding) model, but only if

the optimal linear reconstructors are estimated

from a population of neurons.

The idea that a linear approximation is bet-

ter suited for the neural decoding than encoding

function was first exploited to estimate the infor-

mation rate of fly visual neurons (Bialek et al.,

1991). By contrast, our model predicts that, if

the neural representation is sparse and over-

complete, then the asymmetry should emerge

only in multi-neuron recordings. To our knowl-

edge, this asymmetry has not been tested for

high-level auditory representations. Our model

thus makes a strong prediction: that linear

decoding does not provide an advantage over

linear encoding for single neuron experiments,

whereas the former outperforms the latter for

multi-neuron experiments.

3.4.3 Context-dependence of STRFs

A third prediction that follows from the piece-

wise linearity of the encoding function is that

the linear component of receptive fields should

depend on the acoustic context. Following con-

ventional usage in auditory physiology, we will

use the term spectrotemporal receptive field, or

STRF, to refer only to the linear component of

the encoding function, even though the encod-

ing function itself may be highly nonlinear (The-

unissen et al., 2000, 2001; Kowalski et al., 1996).

(In visual physiology, “STRF” is used to refer

to the “spatial temporal receptive field,” but the

quantities are analogous.) The STRF is the ana-

log (in a high-dimensional input space) of the

slope of a neuron’s tuning curve in one dimen-

sion.

In an experimental setting, piecewise linear-

ity predicts that the STRF should depend on the

acoustic context. We define the acoustic context

of a feature dij with respect to a stimulus y as

the collection of other features activated simul-

taneously by that stimulus. In music, for ex-

ample, the features tend to resemble musical

notes, and the acoustic context can be thought

of as the set of notes (e.g. in a chord) that ac-

company a given note. Figure 10 shows the

STRF of the same neuron (a trumpet feature) in

two different contexts (either clarinet or flute.)

The gross features of the STRF (e.g. the excita-
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Figure 8: Prediction 2: Linear decoding out-

performs linear encoding for multi-neuron

but not single neuron experiments. (A) The

mutual information between a simulated neu-

ron’s response and the stimulus (Total) was com-

pared with the mutual information between the

stimulus and the optimal linear estimate of the

stimulus obtained from the activity of a single

neuron (Dec), and between the actual response

and an optimal linear estimate of the response

obtained from the stimulus (Enc). The two lin-

ear estimates were comparable, and both cap-

tured only a fraction of the total information,

indicating that encoding and decoding are com-

parable for single neurons. (B) Decoding out-

performs encoding in a simulated multineuron

experiment. The reconstruction quality is plot-

ted as a function of the optimal linear decoder

(dark curve) or the optimal linear encoder (light

curve). The reconstruction quality is a normal-

ized measure of the accuracy of reconstruction,

defined as 1 − 〈‖error‖2/‖signal‖2〉; see meth-

ods for details. Encoding and decoding per-

form comparably when only a few neurons are

recorded, but as the number of neurons recorded

increases, the reconstruction quality of decoding

grows faster. When the activity of all neurons

involved in the representation is recorded (75 in

this simulation), decoding is perfect.

tory band around 880 Hz) are preserved in both

contexts, but the secondary features (e.g. the

addition of an inhibitory sideband) is context-

sensitive. Changes in the STRF for different

features and different contexts can be larger or

smaller than in this example. Stimulus context

thus changes the neural encoding function, sug-

gestive of the non-classical receptive field mod-

ulation observed in visual and auditory cortexes

angle
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feature 3
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Figure 9: Encoding is nonlinear (piecewise

linear). (A) Three features in two dimensions

constitute an overcomplete basis. A sample sig-

nal y is indicated with an ‘∗’. (B) Tuning curves

for the three features are piecewise linear. The

firing rate of each of the three units in (A) is

given as a function of angle for stimuli of unit

length; the point y in (A) is at about 45◦. Be-

cause the sample space is two-dimensional, any

given point is represented by at most two active

neurons. Decoding is linear: the point y is re-

covered by a weighted sum of the features, with

the corresponding neural activities constituting

the weights. Encoding, however, is nonlinear:

the slope of all active neurons’ activation func-

tions can change at the boundaries, whenever

any neuron becomes active or inactive. The ba-

sic intuition shown here generalizes to the other

examples in this paper, in which the dimension-

ality of the space (given by the number of ele-

ments in the spectrogram) is much higher.

(David et al., 2004; Valentine and Eggermont,

2004).

Context-dependence as defined here is

stronger than simple nonlinearity. Specifically,

the prediction is that there should exist ex-

tended subregions of stimulus space where the

encoding function of a given target neuron is

one linear function, and across some boundary

in stimulus space switch to a second linear

function. These boundaries are demarcated by

the activation of another (non-target) neuron in

the population and the de-activation of a second

(non-target) neuron (Figure 9). This prediction

could be tested using a multi-neuron recording

technique.

The locally linear encoding induced by sparse-

ness may help reconcile some of the apparent
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contradictions in the auditory literature. STRFs

obtained using a “moving ripple” basis can pre-

dict responses to linear combinations of basis el-

ements (Kowalski et al., 1996). However, lin-

ear encoding (STRF) models fail to predict neu-

ral responses when the stimulus domain is ex-

tended to include a wide selection of complex

sounds (Machens et al., 2004; Linden et al.,

2003), consistent with the idea that ripples rep-

resent a subspace within which encoding is lin-

ear. Context sensitivity may also provide an ex-

planation for a proposed neural correlate of co-

modulation masking release in which the addi-

tion of a pure tone can suppress the response

to temporally-modulated noise (Nelken et al.,

1999); this form of contextual modulation can-

not be explained by any purely linear encoding

model.

4 Discussion

Our main result is that the appropriate ‘sparse’

neural representation implicitly separates a

mixture of sound sources into its constituent au-

ditory streams. In this model, sources at dif-

ferent positions in space were separated with

only monaural information by exploiting the dif-

ferential filtering imposed by the HRTF, un-

der the assumption that the source locations

have already been identified by other mecha-

nisms. This model provides a possible expla-

nation for an important question about corti-

cal organization: Why are there so many more

neurons in the auditory (or visual) cortex than

in the cochlea (or retina)? The answer we pro-

vide, motivated by the ability of an overcomplete

sparse representation to separate sources, is po-

tentially quite general, and may be applicable to

other brain regions as well.

This model was motivated foremost by the

computational demands of source separation.

Source separation is a complex computation,

and we could no more expect to solve the whole

problem in its entirety here than we could ex-

pect to solve completely its visual analog—scene

segmentation—or any of the many other chal-

lenging problems in computational vision. We

have instead concentrated on a restricted form

of the problem involving only the spatial cues

Sparse Context 1:
Violin, Trumpet, Flute

Sparse Context 2:
Violin, Trumpet, Clarinet

Original feature

3520

880

220

55

[Hz]

–90 –60 –30 0 [ms]

A

C D Difference
( Context 1 ) – ( Context 2 )

B
–1 +10

Figure 10: Prediction 3: Dependence of

STRF on context. (A) Spectrogram of trumpet

feature, showing a strong fundamental around

880 Hz and some higher harmonics. (B,C) The

STRFs corresponding to the feature in (A) when

that feature is activated in two different con-

texts (clarinet or flute played simultaneously),

derived under the assumption of a sparse neu-

ral representation. The STRF provides the en-

coding from the stimulus to neural activity. The

color at any point of the STRF indicates the

value (in spikes/second) of the kernel which is

convolved with the spectrogram of the stimulus

to generate a neural response. Under the sparse

assumption, the encoding is piecewise linear,

and the STRFs shown are two out of the many

possible pieces. The STRF is obtained from the

appropriate row of the matrix D⋄
k (see Appendix

A.3). (D) The difference between the two spec-

trograms. Note that they show the same basic

harmonic structure, but differ in details such as

the relative contributions of the excitatory and

inhibitory sidebands. The differences can be as

large as the STRFs themselves.

introduced by the HRTF, with the expectation

that the same framework can be generalized to

understand how some other cues might be used.

Sparseness provides a powerful and useful

constraint on neural activities. Our results

complement and extend previous work on find-

ing features that permit an efficient representa-
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tion of auditory or visual scenes (Olshausen and

Field, 1997, 1996; Lewicki, 2002; Bell and Se-

jnowski, 1997; Schwartz and Simoncelli, 2001;

Klein et al., 2003; Smith and Lewicki, 2006).

In our framework the HRTF “tags” these fea-

tures so they can be assigned to the appropriate

source. Other psychophysical cues important for

acoustic stream segregation, such as common

onset time, could be used in a similar way.

4.1 Efficient coding and sparse-
ness

Our approach is compatible with the “efficient

coding hypothesis” (Barlow, 1961), according to

which the goal of sensory processing is to con-

struct an efficient representation of the sensory

environment. Building on these results, we used

NMF to derive a set of basis elements with

which auditory stimuli could be represented

sparsely. Although we did not test bases ob-

tained using other approaches, we do not expect

that our results would be sensitive to the partic-

ular method used to find the basis; any sparse

basis would likely have worked.

The principle of efficient, or sparse, coding

has been used to predict receptive field proper-

ties of both auditory and visual neurons (Simon-

celli and Olshausen, 2001; Lewicki, 2002; Smith

and Lewicki, 2006; Bell and Sejnowski, 1997; Ol-

shausen and Field, 1996). However, the focus

of the present work is not on the receptive field

properties themselves, but rather on how the

resulting sparse representation can subserve a

computation. Our predictions are therefore not

about the detailed structure of receptive fields,

but rather about how receptive fields interact.

The motivation for sparseness here is not

coding (or metabolic (Laughlin and Sejnowski,

2003; Levy and Baxter, 1996)) efficiency per se,

but rather performance on a particular compu-

tational problem: source separation. There are

contexts in which coding efficiency imposes im-

portant constraints on representation; for ex-

ample, the retina compresses visual information

collected at 108 photoreceptors into a signal that

is carried by only about 106 fibers in the optic

nerve. For source separation, however, sparse-

ness provides a mathematical instantiation of

Occam’s Razor: it allows a search for the most

likely interpretation to be conducted by search-

ing for the sparsest interpretation.

Sparse encoding implies that most stimuli

should elicit only modest firing in most neurons,

as has been observed experimentally for both

simple and complex auditory and visual stim-

uli (DeWeese et al., 2003; Machens et al., 2004;

Vinje and Gallant, 2000), but it does not im-

ply that responses must be weak for all stim-

uli. Sparseness implies merely that stimuli

elicit only a small number of spikes across the

neuronal population; indeed, a neuron encoding

some particular feature d will fire maximally

when the stimulus d is presented. Sparseness

in this model is therefore a constraint on the ac-

tivity of the population of neurons involved in

a representation, rather than on the activity of

any single neuron. Our results are thus fully

consistent with experiments indicating that it

is sometimes possible to optimize stimuli online

to obtain high firing rates (Barbour and Wang,

2003; deCharms et al., 1998), since in our frame-

work such a stimulus is the feature associated

with the neuron.

Directly assessing the sparseness of a neu-

ronal representation experimentally is difficult.

The key issue is how many neurons (or spikes)

participate in the representation of a typical

stimulus. Ideally this would be measured by

recording all spikes from all neurons simultane-

ously, but this is not possible using the exper-

imental techniques currently available. Never-

theless, there is growing evidence that natural

auditory (DeWeese et al., 2003; Machens et al.,

2004) and visual (Vinje and Gallant, 2000; Bad-

deley et al., 1997) stimuli activate only a rela-

tively small number of neurons (Olshausen and

Field, 2004). Thus the representational sparse-

ness assumed by this model should be viewed

as at least provisionally consistent with the cur-

rent experimental evidence about cortical repre-

sentations.

4.2 Overcomplete representations
as a model of cortex

Although there is nothing in the model that ex-

plicitly ties it to one or another brain area, we
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think it most likely that, at least in mammals,

the operations we describe occur in the cortex,

rather than at subcortical stations. First, recep-

tive fields in auditory cortex are heterogeneous,

and often have the broad and complex spec-

trotemporal structure (Sutter, 2000) required to

exploit the HRTF.

Secondly, and more significantly, auditory cor-

tex has the characteristics expected from an

overcomplete representation. There are about

30,000 auditory nerve fibers, but more than a

thousand times as many auditory cortex neu-

rons. Assuming that the “representational

fidelity”—the amount of information that can be

represented by a single spike—of neurons in cor-

tex is comparable to that at the periphery, the

“representational capacity” of cortex is far in ex-

cess of what is needed to form merely a com-

plete representation. This model suggests a way

in which this excess representational bandwidth

can be used for computation, instead of merely

to overcome neuronal noise as has sometimes

been proposed.

Although we do not know how sparse corti-

cal representations are achieved, it seems likely

that the underlying circuitry involves lateral

interactions. Indeed, “sparsification” is simi-

lar to divisive normalization approaches, which

are motivated by both circuit and computa-

tional considerations (Schwartz and Simoncelli,

2001). Explicit circuit dynamics and connection

weights can be obtained using gradient descent

to minimize the total neural activity in Eq. 10.

4.3 Model predictions

We have identified three clear experimental pre-

dictions of the model. First, the optimal linear

decoder estimated from an experiment in which

the activity of multiple neurons are recorded

should maximize a target neuron’s firing rate.

Second, there should be an asymmetry between

the performance of the optimal linear encoder

and decoder, but this asymmetry should be-

come evident only in interpreting multi-neuron

recording experiments; the model predicts that

the optimal linear encoder and decoder in a sin-

gle neuron experiment both underperform the

“true” optimal (i.e. nonlinear) decoder. Finally,

the STRF should be dynamically influenced by

acoustic context. These predictions can be used

to test—and falsify—the model.

Perhaps the most surprising prediction of this

model is how stimulus optimization for a tar-

get neuron can improve by recording from other

neurons involved in the representation. To our

knowledge, online stimulus optimization using

data from more than one neuron has not been

previously proposed, but could be practical us-

ing modern multi-neuron recording techniques.

We have assumed that the neural decoding

function—the transformation from the neural

response to the stimulus—is linear. However,

we have shown that sparseness implies that the

neural encoding function—the inverse transfor-

mation from the stimulus to the response—is

in general nonlinear (piecewise linear). This

asymmetry, which emerges only in multi-neuron

recording experiments, is a strong and testable

prediction of the model.

This asymmetry further implies the context-

dependence of the STRF. We speculate that this

may explain why linear (STRF) encoding mod-

els work well in restricted domains (Kowalski

et al., 1996) but fail for richer stimulus ensem-

bles (Machens et al., 2004; Linden et al., 2003).

However, context dependence has not yet been

tested directly.

4.4 Relation to independent com-
ponent analysis (ICA)

Our formulation of the source separation prob-

lem (Eq. 3) differs in two respects from the one

usually considered in the ICA literature. First,

we have assumed pre-filtering of each source by

a known filter h, whereas in the usual formu-

lation the weighting of each source is given by

an unknown scalar. Second, in most formula-

tions the receiver is assumed to have access to

the sources via several sensors, each of which is

exposed to a different (linear) combination of the

sources, whereas here we assume only a single

sensor with input y.

Most approaches to solving such multi-sensor

formulations focus on recovering an “unmixing

matrix” which inverts the mixing matrix gov-

erning the weighting of each source at each sen-

sor. In such cases, it is generally sufficient
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to assume simply that the sources are statisti-

cally independent (Comon et al., 1991; Comon,

1994; Bell and Sejnowski, 1995; Belouchrani

et al., 1997; Amari and Cichocki, 1998). If, how-

ever, there is only a single sensor, the prob-

lem is degenerate and such approaches fail:

separating multiple sources from a single sen-

sor requires assumptions stronger than sim-

ple independence (Cauwenberghs, 1999; Roweis,

2001; Hochreiter and Mozer, 2001; Jang and

Lee, 2003; Smaragdis, 2004). The intermedi-

ate case—at least two sensors but more sources

than sensors—simplifies the problem consider-

ably (Bofill and Zibulevsky, 2001; Rickard and

Dietrich, 2000; Linsker, 2001), because binaural

cues as well as monaural ones can be utilized.

Recent advances in ICA have emphasized the

utility of sparse overcomplete representations

for source separation problems in acoustic, vi-

sual and other domains (Farid and Adelson,

1999; Lee et al., 1999; Lewicki and Sejnowski,

2000; Zibulevsky and Pearlmutter, 2001; Li

et al., 2004; Levin and Weiss, 2004). Here we

have built on these ideas, and developed a novel

approach to separating multiple “augmented”

(pre-filtered) signals combined at a single sen-

sor.

Our framework can be generalized to exploit

other cues used in single sensor separation, such

as common onset time. It can also readily be

extended to make use of binaural information.

Each HRTF function is made single-input two-

output, and the lengths of the column vectors

corresponding to the post-HRTF dictionary ele-

ments and the observation vector are doubled.

Interaural time and level disparity can then be

used to separate sources. Information from two

(or more) sensors can thus be naturally incorpo-

rated.

4.5 HRTF and source separation

The model assumes that sources have a statisti-

cal structure consisting of spectral correlations

that can be exploited by filtering by the HRTF.

One novel contribution of this work is its spe-

cific proposal for how the HRTF can be used

for source separation, a process related to but

distinct from sound localization. Spectral cues

are not strictly required for sound localization:

binaural cues can provide robust cues even in

the absence of spectral cues. Conversely, source

separation can proceed when spectral cues are

weak—or indeed, even when spatial cues are

completely absent, as for example when picking

out a violin from within a concerto played over

a single speaker. This illustrates a general prin-

ciple: no single cue is essential to source sepa-

ration, and the auditory system will promiscu-

ously exploit any cues that are available.

Nevertheless, it is clear that HRTF cues,

when present, help in source separation (Yost

et al., 1996). We have shown how neural sys-

tems can exploit these cues using sparse repre-

sentations. We speculate that sparseness may

represent a general adaptation used by the ner-

vous system to separate acoustic sources, and

that similar principles may be also involved in

source separation in other modalities, such as

olfaction.
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A Appendix

A.1 Notes on regularizers

L0 minimization: Minimizing sparseness in

the L1 sense is not the only possible choice. One

natural alternative is the L0 norm, which mini-

mizes the total number of active neurons—the

total number of nonzero activities cij—rather

than the total number of spikes. Although

this constraint also seems biologically sensible,

it leads to a computationally intractable (NP-

complete) combinatorial problem (Donoho and

Elad, 2003); moreover, in many cases it leads to

the same solution as the minimum L1 solution
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(Li et al., 2004), particularly in the presence of a

noise model. We therefore consider only the L1

solution here.

Conditioning of dense representation:

From Eq. 11 it is clear that the uniqueness

of the solution depends on the invertibility

and condition number (ratio of largest to

smallest singular values) of D, whose columns

dij = hi ∗ qj depend in turn on both the filters

hi and the source elements qj . In particular, if

there is no filter hi, as in the usual formulation

of source separation, then the columns of D

are identical, and the solution is therefore

degenerate. The greater the difference between

the filtered copies of the sources—the columns

of D—the smaller the condition number of D

and the more numerically stable the problem.

Probabilistic interpretation of regulariz-

ers: Interpreted probabilistically, the regular-

izers on neural representations (Eqs. 10 and 11)

correspond to maximum likelihood estimates us-

ing different a priori assumptions about the

processes generating the stimuli, whose esti-

mates are represented as the neural activities

participating in a representation (Figure 1D).

The pseudoinverse assumes that the under-

lying causes represented by the activities cij

were drawn from a Gaussian distribution, while

the sparseness regularizer assumes instead a

Laplacian distribution, p(cij) ∝ e−|cij |. Because

a Laplacian distribution has more elements very

close to (and very far from) zero than does a

Gaussian with the same variance, it corresponds

to a sparser description in terms of cij . Note that

without a noise term, the maximum likelihood

estimates using any prior yields perfect (zero re-

construction error) representations of the stim-

ulus; the prior here is on the distribution of

the underlying causes represented by the coef-

ficients cij , rather than on the distribution of re-

construction errors (as for example in robust fit-

ting methods.) Only when a noise term is added

(Eq. 1) do the neuronal activities cij cease to rep-

resent the stimulus perfectly.

A.2 Asymmetry of sparse repre-
sentations

Why does an overcomplete sparse representa-

tion predict an asymmetry between encoding

and decoding (Section 3.4.2)? To understand

this, let us begin by considering the more famil-

iar case of a complete (but not overcomplete) or-

thonormal representation, such as a Fourier or

ripple basis. In this case, there is perfect sym-

metry between the encoding and decoding trans-

formations. (These transformations are referred

to as analysis and synthesis in the wavelet liter-

ature.) That is, if the columns of D in the de-

coding equation y = Dc (Eq. 9) are orthonor-

mal, then the inverse (encoding) transforma-

tion is given by c = DT y, where we have used

the fact that the inverse of an orthonormal ma-

trix is its transpose, DT = D−1. In this case,

the encoding and decoding filters—the rows and

columns of D—are identical. This explains the

familiar symmetry between the forward and in-

verse Fourier transform, in which the rows and

columns of D are sinusoids.

If the columns of a square matrix D are not

orthonormal, then its inverse (if it exists) is not

equal to its transpose. However, the encoding

transformation c = D−1y is still linear, since it

can be expressed as a linear combination of the

columns of D−1. Even in the overcomplete case

(Eq. 11), linearity of encoding is preserved if the

dense representation is used, since in that case

the encoding filters are the columns of the pseu-

doinverse D⋄.

In the sparse overcomplete case, asymme-

try arises because the inverse transformation

is in general nonlinear. Here, the representa-

tion is found by solving the optimization prob-

lem of Eq. 10. Note that this in turn gives

a reason that stimulus optimization requires

multi-neuron recordings (Section 3.4.1). Specifi-

cally, because the neural responses cannot be ex-

plained by a single (or a global) linear encoding

function, the feature (or the stimulus that elic-

its the maximum response) cannot be estimated

correctly by a linear regression using single unit

data.
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A.3 Context dependence of STRFs

In order to understand the context dependence

of STRFs (Section 3.4.3), we consider the en-

coding function associated with the sparse rep-

resentation of a particular stimulus yk. Con-

sider the “packed matrix” Dk whose columns

are the subset of features involved in the sparse

representation of the stimulus yk, i.e. only the

columns corresponding to the nonzero elements

of ck. This matrix satisfies the decoding relation

yk = Dkc̄k, (12)

where c̄k consists of ck without zero elements.

However, because of the sparseness (L1) prior,

the matrix Dk is at most full-rank, and is con-

structed from only at most Nrow features. It

is thus not overcomplete, and so the encoding

can be specified by a matrix using the pseudoin-

verse,

c̄k = D⋄
kyk. (13)

Thus the encoding function is continuous and

piecewise linear, with the linear segments de-

fined by pseudoinverses D⋄
k and the discontinu-

ities in the first derivative occurring whenever

the stimulus activates (or deactivates) a new

feature (i.e. an element of c becomes non-zero or

zero) and thereby changes Dk.

The STRF for the ith neuron is then obtained

from the ith row of the pseudoinverse of the

packed matrix Dk. (Recall that, following con-

vention, we use the term “STRF” to refer only to

the linear component of the encoding function

from stimulus to response.)

Three comments on the STRF estimation are

in order (Section 2.6). First, we note that con-

structing the matrix Dk requires knowledge of

the solution ck, so that this does not actually

constitute an algorithm for finding ck. Second,

in the special case of the dense representation,

both encoding and decoding are linear. In this

case, the encoding function for any stimulus

(Eq. 11) is simply the pseudoinverse D⋄ of the

full matrix D.

Finally, we note that the fact that even if two

STRFs obtained from a single neuron’s response

to two different stimulus ensembles differ, and

each accounts perfectly for the data to which

it was fit, this does not rule out the possibil-

ity that there might exist some third STRF that

perfectly fits the amalgamation of the two data

sets. Consider two stimuli yk and yk′ which ac-

tivate only features in ck and ck′ , respectively.

The pseudoinverse D⋄
k corresponding to the first

stimulus will be valid (Eq. 13) for any stimu-

lus composed of any subset of features that are

nonzero in ck, but will not be valid for any fea-

tures that were not active. Therefore, any stim-

ulus consisting of sums of features in the union

of the feature sets ck and ck′ will yield incor-

rect results if either of the corresponding packed

pseudoinverse matrices are used. However, a

new pseudoinverse matrix constructed from fea-

tures in the union of the feature sets ck and ck′

could yield correct values for a superset of the

stimulus ensembles for which either of the orig-

inal two STRFs were valid.

Such supersets can only be constructed from a

number of features that is limited by the rank of

D. That is, there does not exist a matrix D⋄
k that

can be used in (Eq. 13) to generate the correct c

for all stimuli. For the example in Figure 10,

we confirmed that there does not exist an STRF

that includes both as special cases.
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