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A striking feature of many sensory processing problems is that there appear to be many more neurons engaged in the internal represen-
tations of the signal than in its transduction. For example, humans have �30,000 cochlear neurons, but at least 1000 times as many
neurons in the auditory cortex. Such apparently redundant internal representations have sometimes been proposed as necessary to
overcome neuronal noise. We instead posit that they directly subserve computations of interest. Here we provide an example of how
sparse overcomplete linear representations can directly solve difficult acoustic signal processing problems, using as an example mon-
aural source separation using solely the cues provided by the differential filtering imposed on a source by its path from its origin to the
cochlea [the head-related transfer function (HRTF)]. In contrast to much previous work, the HRTF is used here to separate auditory
streams rather than to localize them in space. The experimentally testable predictions that arise from this model, including a novel
method for estimating the optimal stimulus of a neuron using data from a multineuron recording experiment, are generic and apply to a
wide range of sensory computations.
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Introduction
Animals in nature confront an acoustic environment consisting
of sounds from a rich, indeed often bewildering, combination of
sources. Survival depends on responding appropriately to poten-
tial threats, food sources, and mates (e.g., at a cocktail party),
while at the same time ignoring the many irrelevant sound
sources that may constitute the majority of the acoustic energy
received. Source separation, or “stream segregation,” is therefore
one of the central problems in acoustic processing that organisms
must solve. Animals must confront many of the same challenges
in solving this problem as do artificial systems, and the insights
gained from the one can be applied to the other. However, little is
currently known about how animals solve this problem (but see
Fishman et al., 2004; Micheyl et al., 2005), and no artificial system
can solve it in a general setting.

Animals exploit a variety of binaural and monaural cues to
separate acoustic sources (Bregman, 1990). For example, two
tones occurring simultaneously are more likely to be grouped
together perceptually (i.e., perceived as arising from the same
source) than the same notes occurring sequentially. Such group-
ing makes sense under the assumption that the auditory system is
trying to discover the statistically independent causes of the
acoustic signals received at the ears (Bell and Sejnowski, 1995,
1997; Lewicki and Sejnowski, 2000; Simoncelli and Olshausen,

2001); simultaneous onset of two tones is unlikely to arise purely
by chance; thus, it is more parsimonious to assume that the tones
were caused by a single source (e.g., as harmonics of a single
fundamental frequency.) Many of the spectral, temporal, and
spatial cues used for stream segregation can be interpreted in this
context.

A striking feature of this and many other sensory processing
problems is that there appear to be many more neurons engaged
in the internal representations of the signal than in its transduc-
tion. For example, humans have only �30,000 cochlear neurons,
but at least 1000 times as many neurons in the auditory cortex.
Although such apparently redundant internal representations
have sometimes been proposed as necessary to overcome neuro-
nal noise, here we posit that they contribute to computation.

To extract the behaviorally relevant information embedded in
natural acoustic environments, animals must be able to separate
auditory streams originating from distinct acoustic sources
(“cocktail party problem”). The auditory cortex has orders of
magnitude more neurons than the cochlea, thus many different
patterns of cortical activity may faithfully represent any given
pattern of cochlear activity. We propose that the cortex exploits
this excess “representational bandwidth” (DeWeese et al., 2005),
or the excess degrees of freedom, by selecting the sparsest repre-
sentation within an overcomplete set of features. This model sug-
gests how this excess representational bandwidth can be used for
computation, instead of merely to overcome neuronal noise as is
usually assumed. We illustrate this model by showing how
sparseness can be used to separate sources perceived monaurally.
The model makes testable predictions about the dynamic nature
of representations in the auditory cortex. Our results support the
idea that sparse representations may underlie efficient computa-
tions in the auditory cortex.

Our approach is to adopt a practical computational frame-
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work for the cocktail party problem and then explore the testable
implications that follow. Here we describe a model of how the
auditory system can exploit one particular sort of monaural seg-
regation cue, namely the spectral cues introduced by the differ-
ential filtering imposed by the head-related transfer function
(HRTF). Note that in contrast to much previous work, the HRTF
is used here to separate auditory streams rather than to localize
them in space; our model assumes that the locations of the
sources have already been determined by other mechanisms.

The model posits that the neural representation of an acoustic
stimulus is overcomplete in the sense that there are many more
neurons available than are needed to represent the stimulus with
high fidelity (Olshausen and Field, 1997; Lee et al., 1999; Lewicki
and Sejnowski, 2000; Zibulevsky and Pearlmutter, 2001). Because
the representation is overcomplete, there are many patterns of
neural activity that all faithfully encode any given stimulus. We
show that constraining neural activity to be sparse selects one of
these representations and that the resulting pattern of neural ac-
tivity solves the source separation problem, even when multiple
sources are audible to only a single ear. The framework is quite
general and can serve as a starting point for understanding how
cortical circuits might exploit other sensory cues as well.

Materials and Methods
All programming was done in Matlab (The MathWorks, Natick, MA).

HRTF. The HRTF is the filter imposed by the head and the detailed
shape of the ear on sounds received at the cochlea. The HRTF depends on
the spatial position (both the relative azimuth and elevation) of the
source (Yost et al., 1996). At some frequencies, the HRTF can attenuate
sound from one location by as much as 40 dB more than from another.

Although every individual has his or her own HRTF, the basic charac-
teristics of HRTFs are similar across individuals. We used a representa-
tive left human pinna HRTF downloaded from http://www.itakura.
nuee.nagoya-u.ac.jp/HRTF/ (Nishino et al., 2001).

Spectral basis for sources via non-negative matrix factorization. We
tested our algorithm on mixtures of musical sources. We used non-
negative matrix factorization (NMF) to obtain basis elements for each
source.

NMF is an algorithm for factorizing a data matrix under an element-
wise non-negativity constraint (Lee and Seung, 1999). The original data
matrix is given as an n � m matrix V, each column of which here contains
the n data values for one of m spectrogram segments. The data matrix V
is approximated by NMF as V � QH, where the dimension of the factors
Q and H are n � r and r � m, respectively. The rank of factorization, r, is
chosen so nr � rm � nm, so as to compress the original nm elements in
the matrix V into a smaller number of elements, nr in Q plus rm in H.
Each column of Q contains one of the basis spectrograms, and the matrix
H represents the coefficients for reconstructing the columns of the orig-
inal data matrix V in this basis. The Q matrices obtained by NMF for each
individual source were concatenated to form an overcomplete source-
space basis matrix D̃ � [Q1 � Q2 � . . . ]. Each column of D̃ was then filtered
through each HRTF and the results concatenated to form the feature
matrix: D � [h1(t) � D̃ � . . . � hN(t) � D̃].

In our experiments, the spectrograms in the data matrix V were ob-
tained from music sounds, natural sounds, or speech sounds: commer-
cial audio CDs (instrumental solos, classical and jazz, one each on cello,
clarinet, trumpet, harp, and harpsichord, for a total of five), the audio
CDs The Diversity of Animal Sounds and Sounds of Neotropical Rainforest
Mammals (Cornell Laboratory of Ornithology, Ithaca, NY), and spoken
poetry (Dylan Thomas, T. S. Eliot, Frank O’Hara, and William Butler
Yeats on the commercial audio CD Poetry speaks: hear great poets read
their work from Tennyson to Plath, Sourcebooks Inc., 2001), respectively.
Samples of 100 –150 s were taken, stereo channels averaged, and the
signal down-sampled from the original 44.1 kHz to 8 kHz. Log-scaled
spectrograms were generated using a custom Matlab routine (available
upon request) with a bin size of 5 ms and 75 frequency bands ranging
from 55 to 3951 Hz in steps of 1/12 octave. Each column of V held a strip

of spectrogram, yielding a dimensionality of n � 75, and m � 5000 samples
were used for the training. Note that the training samples were distinct from
those used for the testing. Specifically, we used 10,000 samples to assess the
representational sparseness achieved by the NMF basis (see Fig. 2) and
20,000 random combinations of three sources (using the 10,000 samples in
Fig. 2) to assess separation performance (see Fig. 4).

Each NMF run consisted of 500 iterations with 10 restarts from ran-
dom initial conditions, with the restart that yielded the minimum total
error chosen. The factorization rank was r � 15. Concatenating the five Q
matrices for the five instruments yielded a dictionary of 75 basis ele-
ments, each of which was filtered by each of three different HRTFs,
resulting in a feature matrix D with 225 columns. The source locations
were randomly chosen but 90° apart from each other in the simulations
(in Fig. 3, the three sources were located on your left, center and right,
corresponding to the HRTFs for azimuth �90°, 0°, and 90°, respectively,
with zero elevation). The analyses on the natural sound and speech sound
were performed in a similar manner, with 5000 training samples for each
data matrix V.

Minimization. Pseudoinverses (L2-norm minimization) were com-
puted with the pinv routine in Matlab, which uses an algorithm based on
singular value decomposition. The linear programming problem (Eq.
14) was solved using the Matlab Optimization Toolbox linprog routine.
We did not impose a non-negativity constraint on the coefficients. As a
result, the dense solution consists of negative coefficients as well as pos-
itive ones, whereas all of the substantially nonzero elements are positive
for the sparse solution. Figure 6 shows the absolute values of the dense
solution coefficients.

The linear programming problem given in Equation 14 can be sensi-
tive to noise. We therefore solved an augmented version of this that
included a noise model. In particular, we assumed that the total amount
of noise was bounded. Thus, Equation 14 was reformulated as the
following:

minimize
c

�c�1 subject to �Dc � y�p � �, (1)

where � is proportional to the noise level and with p � 1, 2, or �. Letting
� 3 0 is equivalent to assuming that the noise is very small, and the
solution converges to the zero-noise solution, Equation 14.

The Gaussian noise case, p � 2, can be solved by semidefinite pro-
gramming methods (Fletcher, 1985). Both p � 1 and p � � can be solved
using linear programming. All approaches yield qualitatively similar
results.

The solutions presented here all used p � 1. For this case, noise vectors
e � and e � are introduced and included in the optimization, allowing
Equation 1 to be rewritten in standard form:

c�, c�, e�, e� � 0
(2)

Dc� � Dc� � e� � e� � y

	1 · · · 1
e� � 	1 · · · 1
e� � �.

We typically examined four different noise levels (log10�y�1/� � 1, 2, 3, 4)
and selected the one with the best separation performance on average as
the result (see Figs. 4, 5).

Signal-to-noise ratios (SNRs) were calculated as the reciprocal of the
average across sources of �(xi(t) � x̂i(t)) 2�/�xi(t) 2�, where xi(t) is the
original spectrogram of the ith source, x̂i(t) is its estimate when recovered
from the mixture, and the average ��� is over time.

To measure the degree of sparse representations by NMF basis ele-
ments (see Fig. 2) and its relationship to the separation performance (see
Fig. 4), we introduced a “sparseness index” defined as the number of
nonzero elements in the presence of a single source divided by the di-
mension size. This index is unity for a dense representation and ap-
proaches zero as the representation becomes sparser. The noise level was
log10�y�1/� � 1 in Figure 2 B, resulting in the reconstruction SNR of
18.3  3.8, 16.0  3.0, and 18.0  3.6 (median  interquartile range in
decibels) for music, natural sound, and speech ensembles, respectively.

Estimation of linear encoders and decoders. Given a set of stimuli yk (for
k � 1, 2, . . . ) and the corresponding responses ck generated using Equa-
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tion 14, the optimal linear decoding filter D̂ was estimated by solving the
following regression problem:

minimize
D̂

�
k

�yk � D̂ck�2
2 , (3)

where ���2 denotes the L2 (Euclidean) norm. Similarly, the optimal linear
encoder Ê was obtained by solving the following equation:

minimize
Ê

�
k

�Êyk � ck�2
2 . (4)

Note that we used a fraction of the elements in ck for the linear filter
estimation and showed the average results in Figures 7 and 8 over 200
random samplings of neurons. Also note that the ith column of D̂ and the
ith row of Ê correspond to the optimal linear decoder and encoder for the
ith neuron, respectively.

In Figure 7, we used a 1168 � 3600 feature matrix D, each column of
which held a feature spanning over 16 time bins (96 ms), with a bin size
of 6 ms and 73 frequency bands ranging between 55 and 3520 Hz in steps
of 1/12 octave. As the original feature of a target neuron, we chose the one
obtained from cello ensembles, and thus we used cello sounds as input
stimuli in the simulation.

Asymmetry of sparse representations. To illustrate the asymmetry of
linear encoding and decoding in the framework of our model, we ran
simulations in 25 dimensions with 75 neurons. In the simulations, the
threefold overcomplete features (a 25 � 75 feature matrix D) were first
generated randomly on the unit hypersphere. Neural activities for sample
stimuli drawn from a Gaussian distribution were then determined by
Equation 14.

For simulated single unit data (see Fig. 8 A), we computed the mutual
information I(c, s) between the simulated neural responses c and stimu-
lus s using I(c, s) � H(c) � H(c�s) � H(c), where H(c) is the response
entropy and H(c�s), the conditional of the response given the stimulus, is
zero because the relationship between stimuli and responses was deter-
ministic. Thus the mutual information between the single neuron and
the stimulus was just equal to the response entropy, which we estimated
by direct binning from the histogram of neural responses. We compared
this information to either the mutual information between the optimal
linear estimate of the response given the stimulus and the actual stimulus
(encoding), or between the optimal linear estimate of the stimulus given
the response and the actual response (decoding). For these information
estimations, we used the Gaussian approximation to bound the entropy
of the reconstruction error (Bialek et al., 1991). We then normalized
these linear information estimates to full mutual information to obtain
the “reconstruction quality”:

1 � � linear estimate of mutual information

mutual information
�. (5)

For multiunit data (see Fig. 8 B), the computation of the full mutual
information (rather than the linear approximation) was computationally
intractable. We therefore computed the following simpler measure of the
reconstruction quality of the models:

1 � ��reconstruction error�2

�response or signal�2
�, (6)

where ���2 denotes the L2 norm, and ��� denotes the mean over data. Note
that the measure is based on the relative length of the model errors and
that it gives zero for pure noise and one for perfect reconstruction.

Context dependence of spatial temporal receptive fields. In Figure 10, for
demonstration purposes, we used a 1168 � 3600 feature matrix D (the
same one as in Fig. 7) and used two different sets of 300 active features
(i.e., 1168 � 300 packed matrices Dk; see Appendix A.3) to estimate the
spectrotemporal receptive fields (STRFs) for the two different contexts.
Note that some of the features were active in both contexts (including the
one shown in Fig. 10 A), whereas others were active only in either context.

Results
Our main goals are to explore a model of computation with
sparse representations and to generate new experimentally test-
able predictions from this model. To make our model concrete,
we consider a specific computation: a special case of the monau-
ral cocktail party problem in which the HRTF provides the criti-
cal cue for disentangling sources. We focus on this special case
not because it is of central importance from a psychophysical
perspective (in a general setting, the HRTF is typically just one of
many cues, and often not the most important) but rather because
this problem provides a convenient way to illustrate the key pre-
dictions. The same sparse framework can be generalized to ex-
ploit other cues for source separation and to other sensory pro-
cessing problems (e.g., vision) as well.

The presentation is organized as follows. First, we define the par-
ticular source separation problem we consider, in which there are
several sources and a single ear. Next, we show how a sparse over-
complete representation, such as that seen at the cortical level in the
auditory system, can be used to separate the sources. Finally, we
identify experimentally testable predictions of the model.

Problem formulation
We have all experienced the basic cocktail party problem as a part
of everyday life: we stand in a room full of people chatting, chairs
scraping, fans humming, and so forth, and strain to understand
the words of a single interlocutor. This familiar but challenging
scenario is interesting precisely because it tests the limits of what
we humans can achieve. The cocktail party is, however, just an
extreme example of a more general problem that the auditory
system constantly confronts. It is rare that we can listen to an
acoustic source without interference from other sources, yet our
auditory system filters the interfering sources out of our con-
scious perception so effectively that we are often almost unaware
of them. The apparent effortlessness with which we solve the cocktail
party problem is deceptive and is a testament to the effectiveness of
our auditory system. Indeed, the problem of background noise rep-
resents one of the main factors limiting the widespread practical
adoption of artificial speech recognition systems.

The auditory system uses a wide variety of psychophysical cues
to segregate auditory streams (Bregman, 1990), including both
binaural and monaural cues. Many monaural cues have been
identified, such as common onset time or comodulation of stim-
ulus power in different parts of the spectrum.

For simplicity, we focus here on just one set of cues: those
provided by the differential filtering imposed on a source by its
path from its origin in space to the cochlea. This filtering is caused
both by the head and the detailed shape of the ear (the HRTF) and
by the environment on sources at different positions in space
(Yost et al., 1996). The HRTF is important for generating a three-
dimensional experience of sound, so that acoustic sources that
bypass the HRTF (e.g., those presented with headphones) are
typically perceived unnaturally, as though arising inside the head
(Wightman and Kistler, 1989; Kulkarni and Colburn, 1998).
Whereas the importance of the HRTF in sound localization has
been studied extensively (Knudsen and Konishi, 1979; Wight-
man and Kistler, 1989; Wenzel et al., 1993; Hofman and Opstal,
2002), its role in source separation as such has not. In contrast to
much previous work, the HRTF is used here to separate auditory
streams rather than to localize them in space.

It is often reasonable to assume that sound arriving from dif-
ferent locations should be treated as arising from distinct sources.
For the purposes of the present study, all sounds from a given
position are defined to belong to the same source, and any sounds
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from a different position are defined to belong to different
sources. We emphasize that although sound localization (the
process by which an animal determines where in space a source is
located) is related to source separation (the process by which an
animal extracts different auditory streams from a single wave-
form), the two computations are distinct; neither is necessary nor
sufficient for the other. Here we focus on the separation problem
and assume that source localization occurs by other mechanisms.

The particular source separation problem we consider is as
follows. Suppose there are N acoustic sources located at known
distinct positions in space, with xi(t) being the time course of the
stimulus sound pressure of the ith source at its point of origin.
Associated with each position is a known filter given by hi(t). In
what follows we will refer to hi(t) as the HRTF, but in general,
hi(t) will include not just the filtering of the head and external ear
but also the filter function of the acoustic environment (reverber-
ation, etc.).

The signal y(t) at the ear is the sum of the filtered signals:

y�t� � �
i�1

N

hi�t� � xi�t� � �
i�1

N

x̃i�t� , (7)

where � indicates convolution and x̃i(t) � hi(t) � xi(t) is the ith
source in isolation after filtering. (We can say that xi(t) is the
ith source measured in source space, whereas x̃i(t) is the same
source measured in sensor space.) The organism’s goal in source
separation is to recover the underlying sources xi(t) from the
signal y(t), using knowledge of the directional filters hi(t). For
example, if xalice(t) and xbob(t) are speech streams generated by
two speakers (sources), Alice and Bob, at a cocktail party, the goal
is to disentangle these two streams using the only signal available,
the sum y(t) � halice(t) � xalice(t) � hbob(t) � xbob(t). Note that the
actual spatial locations of the sources are not computed during
the separation; we do not address the localization problem in this
paper.

The particular monaural version of this problem that we con-
sider here is a special, more difficult, case of the binaural (or, in
artificial systems, the multiple microphone) problem.

Neural representation for source separation
How might a neural system solve the source separation problem
described above? We begin by assuming that each short segment
(e.g., 5 ms) of each acoustic source x̃i(t) (as it sounds at the
cochlea) is represented in the activities cij of a population of neu-
rons indexed by components j and source positions i:

x̃i�t� � �
j

cijdij�t�, (8)

where dij(t) are stimulus “features,” i.e., elements of a (not nec-
essarily orthogonal, and possibly overcomplete) linear basis. We
will interpret the neural activities cij as the spike rate of the cor-
responding neurons during each segment. The signal y(t) is then
given by the following:

y�t� � �
ij

cijdij�t�. (9)

We have introduced Equation 9 as an analytic model: given a
stimulus y(t), find a set of features dij(t) and neural activities cij

that represent that stimulus; if the features span the stimulus
space, such a representation will always exist. Below we will focus
on the case in which the feature set permits a sparse representa-

tion, i.e., where only a few of the neural activities cij are signifi-
cantly nonzero. (Although “sparse” might colloquially refer to
the case in which most of the activities cij are exactly zero, here we
use a generalized notion of sparseness, common in the literature,
which requires only that most activities be close to zero.)

Equation 9 assumes a linear relationship between an auditory
stimulus y(t) and its neural representation in terms of features
dij(t). The assumption of linearity is common in both visual and
auditory physiology. For example, it is often assumed that a pop-
ulation of neurons in cortical area V1 represents a visual scene in
terms of a collection of oriented edges; in this case, the scene and
the features in Equation 9 would be rewritten as functions of
spatial rather than temporal coordinates, but the formulation
would be otherwise identical. Similarly, in auditory physiology,
stimuli are sometimes represented as a weighted sum of basis
elements such as moving ripples (Kowalski et al., 1996; Klein et
al., 2000); in the context of Equation 9, this implies assuming a
one-to-one correspondence between a basis element (derived
from the ripple basis) dij(t) and the firing rate cij of a correspond-
ing neuron.

To relate the neural representation of the signal y(t) in Equa-
tion 9 to the sources xi(t), we further assume that each source can
be expressed as a linear combination of (not necessarily orthog-
onal) basis elements qj(t):

xi�t� � �
j

cijqj�t�, (10)

where the basis elements qj(t) are related to the features dij by
convolution with each filter hi(t):

dij�t� � hi�t� � qj�t�. (11)

Combining these expressions, the signal y(t) received at the ear is
related to the sum of the filtered sources by the following:

y�t� � �
i

hi�t� � xi�t�

� �
i

hi�t� � ��
j

cijqj�t��

� �
ij

cij�hi�t� � qj�t��

� �
ij

cijdij�t�. (12)

There are thus more features dij(t) in the neural representation
than there are basis elements qj(t). In particular, if there are
known to be N sources, then there are N-fold more features dij(t)
than basis elements qj(t). As before, Equations 9 –11 represent an
analytic model: given a set of features dij(t) [or equivalently a set
of basis elements qj(t) and position-dependent filters hi(t)] and
an input y(t), find an appropriate set of neural activities cij.

The basis elements qj(t) reflect statistical correlations within
sources; each source typically consists of several such elements.
These basis elements can be thought of as an internal model of the
components of acoustic sources, in the same way that edges
might be thought of as components of visual sources (objects).
Because the neural representation involves prefiltering with the
HRTF (Eq. 11), the coefficient cij associated with feature dij(t) is
then better thought of as representing the hypothesis that an
element qj(t) is present at position i. In the same way, neurons in
the primary visual cortex can be thought of as representing the
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hypothesis (dij) that an oriented edge (qi) is present at a particular
position (i) in the visual field. In other words, the elements qj(t)
reflect only the properties of the stimulus, whereas the features
dij(t) arise from the interaction of these elements with the sense
organs.

A population of neural activities satisfying Equations 9 –11 has
effectively solved the source separation problem, because a given
source i can be reconstructed merely by summing over all neu-
rons associated with position i. This formulation therefore recasts
the source separation into a new problem: finding the appropri-
ate neural activities cij. Such a representation, if it could be found,
is especially appealing because it permits the sources to be recon-
structed (by Eq. 10) directly in terms of the stimulus elements
qj(t) as they sound at the source (i.e., before filtering); the recon-
struction is therefore invariant to changes in stimulus position. In
the next section, we will show that sparseness provides the key to
specifying the appropriate representation.

For notational and computational convenience we discretize
time and rewrite Equation 9 in matrix form (using boldface to
indicate vectors and matrices):

y � Dc, (13)

where y is a column vector whose Nrow elements correspond to
the discrete-time sampled elements y(tk), c is a column vector of
length Ncol representing the complete neural activity pattern cij,
and D is an Nrow � Ncol matrix whose columns dij hold the
features with elements dij(tk).

Sparse neural representation of sources
Source separation thus requires finding the neural activities c
such that the neural representation represents the sources xi as
closely as possible. We assume that the neural representation is
overcomplete (Riesenhuber and Poggio, 2000; Olshausen and
Field, 1997), i.e., that the number of neurons (features) is large
(Ncol � Nrow). In this case, many different neural activity patterns
c could represent the stimulus y equally well (Fig. 1A). However,
the goal is not merely to represent the stimulus y, but to find a
representation in which the underlying sources xi are apparent
and from which they can be readily recovered.

Because the neuronal population does not have access to the
sources themselves, but only to their sum y, not enough informa-
tion is available to recover the sources uniquely. The source sep-
aration problem is thus ill posed. (In the same way, knowing that
the sum of two scalars a and b is 12 is not sufficient to recover a
and b, and any choice for a and b that satisfies a � b � 12 is a
possible solution.) The problem can be made well posed by add-
ing additional constraints (regularizers) on the responses, as is
often done in computational vision (Poggio et al., 1985). Here we
consider a sparseness regularizer on the neural representation
(Olshausen and Field, 1996, 1997; Bell and Sejnowski, 1997; Chen
et al., 1998; Lee et al., 1999; Lewicki and Sejnowski, 2000; Vinje
and Gallant, 2000; Simoncelli and Olshausen, 2001; Zibulevsky
and Pearlmutter, 2001; Hahnloser et al., 2002; Olshausen and
O’Connor, 2002). In neural terms, this sparseness assumption
corresponds to representing the acoustic stimulus y in terms of
the minimum number of spikes (Fig. 1C), a biologically appeal-
ing constraint which leads to an energy-efficient representation
(Levy and Baxter, 1996; Laughlin and Sejnowski, 2003). Thus we
assume that the neural representation c satisfies (see Appendix
A.1):

minimize �
ij

�cij� subject to y � Dc. (14)

Equation 14 specifies a linear programming problem with a single
global optimum. Formally, the solution minimizes the L1 norm
�c�1 � �ij�cij� of the solution vector. In practice, the problem we
consider allows for reconstruction noise (see Eq. 1).

Dense neural representation of sources
An alternative regularizer is that implicit in the pseudoinverse
(Strang, 1988), corresponding to the usual least-squares solution
(see Appendix A.1),

minimize �
ij

cij
2 subject to y � Dc. (15)

The pseudoinverse finds the solution c that minimizes the L2

norm, i.e., the squared neural activity �ijcij
2 (Fig. 1B). However, it

is not obvious why it would be useful for the brain to minimize
this quantity, which has units of spikes squared, rather than some
other quantity (such as spikes; see below). Moreover, we show
below that it fails in practice to separate the sources successfully.

Separation of harmonic sources
Successful source separation based on Equation 14 requires that
two conditions be satisfied. First, the sources must be sparsely
representable, as is the case with natural auditory stimuli (Attias
and Schreiner, 1997; Lewicki, 2002; Klein et al., 2003; Smith and
Lewicki, 2006). Second, the sources must have spectral correla-
tions matched to the HRTF. We found that the model was able to
separate acoustic sources consisting of mixtures of music, natural
sounds, and speech.

Finding a feature set
We used NMF to generate a set of basis features from spectro-
grams obtained from samples of solo instrumental music, natural
sounds, and speech (Fig. 2). NMF is an algorithm for factorizing
a data matrix (a matrix whose columns contain the snippets of
solos) under non-negativity constraints (Lee and Seung, 1999).

Figure 1. Overcomplete representation in two dimensions. A, Three nonorthogonal feature
vectors dij in N � 2 dimensions constitute an overcomplete representation, offering many
possible ways to represent a data point y with no error. B, The conventional solution is given by
the pseudoinverse, which yields a dense representation because it minimizes the squared sum
of the neural activity, �ij ci

2
j. This representation invokes all features about evenly. C, The sparse

solution invokes at most N � 2 features because it minimizes �ij�cij�. D, Comparison of neural
activity for the two cases. For the dense representation, all three neurons participate about
equally, whereas for the sparse representation, activity is concentrated in neuron 2.
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In contrast to some other decomposition
approaches, such as principal component
analysis, NMF often yields representations
in which the elements are fairly local, and
which can be interpreted as “parts.”

When applied to music, NMF typically
yielded elements suggestive of musical
notes, each with a strong fundamental fre-
quency and weaker harmonics at higher
frequencies. In many cases, listeners could
easily use timbre to identify the instru-
ment from which a particular element was
derived. When applied to sounds from
other ensembles (natural sounds and
speech), NMF yielded elements that had
rich harmonic structure, but it was not in
general easy to “interpret” the elements
(e.g., as vowels). Nonetheless, these ele-
ments captured aspects of the statistical
structure of the underlying ensemble of
sounds and led to sparse representations
of the ensembles (Fig. 2B).

The choice of NMF in this context was
merely a matter of convenience; we could
have used any basis that captured the spec-
tral correlations in the sources and per-
mitted a sparse representation. Finding
good overcomplete dictionaries from
samples of a stimulus ensemble is a subject
of ongoing research (Kreutz-Delgado et
al., 2003). We do not imagine that NMF is
the “algorithm” by which features are es-
tablished in real neural circuits; such features must surely arise
through a complex interaction of genetic and environmental
cues. We need not, therefore, expect to find a precise correspon-
dence between the features obtained by NMF and those observed
in the auditory cortex. In this respect, our results complement
previous work on finding the features underlying auditory or
visual scenes (Bell and Sejnowski, 1997; Olshausen and Field,
1997, 1996; Schwartz and Simoncelli, 2001; Lewicki, 2002); the
emphasis here is not on the elements themselves but rather on
how they work together to form a representation that separates
sources.

Separation
To test the ability of the model to separate sources, we generated
digital mixtures of three sources positioned at three distinct po-
sitions in space (Fig. 3). In the left column are the spectrograms of
the sources at their origin. Two of the sources (a harp playing the
note “D”; center and bottom) were chosen to be identical; this
example is thus particularly challenging, because the only cue for
separating the sources is the filtering imposed by the HRTF.

Separation was nevertheless quite successful (Fig. 3, compare
left and right columns). These results were typical: whenever the
underlying assumptions about the sparseness of the stimulus
were satisfied, sources consisting of mixtures of music, natural
sounds, or speech were all separated well (Fig. 4). Separation
worked particularly well for mixtures of sparsely representable
sources (i.e., smaller sparseness index values), whereas it did not
work for sources that were not sparsely represented (i.e., larger
sparseness index values). Figure 5 shows that separation without
differential prefiltering by the HRTF was unsuccessful, as was

separation using the Gaussian prior instead of the sparseness
prior (dense representation).

The neural representations underlying separation provide in-
sight into these results. Figure 6A shows the representations of

Figure 2. NMF can be used to find the parts of sound ensembles. A, NMF basis elements for three sound classes (music, natural
sounds, and speech) were aligned in columns by the peak frequency. Note that power is concentrated in the fundamental
frequency, but higher harmonics are clearly visible. Also note that each column, which reflects statistical correlations present in the
sources, is an example of qj(t) defined in Equation 10; it is the filtered versions dij(t) that form the neural representation in Equation
11. B, The ability of the NMF bases in A to represent sounds in a sparse model is quantified in terms of the “sparseness index,”
defined as the number of nonzero elements in the presence of a single source divided by the dimension size. This index is unity for
a dense representation and approaches zero as the representation becomes sparser. The distribution of the “sparseness index” was
0.61  0.27, 0.64  0.17, and 0.49  0.13 (median  interquartile range) for music, natural sounds, and speech, respectively,
over 10,000 test samples; see Materials and Methods for details.

Figure 3. Separation of three musical sources. Three musical instruments at three distinct
spatial locations were filtered (by h1 , . . . , h3 , respectively) and summed to produce the input y,
and then separated using a sparse overcomplete representation to produce the output. Note
that two of the sources (a harp playing the note “D,” center and bottom) were chosen to be
identical; this example is thus particularly challenging, because the only cue for separating the
sources is the filtering imposed by the HRTF. Nevertheless, separation was good (compare left
and right columns.)
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each of the three sources (the same as in Fig. 3) presented in
isolation. In each panel, the activity in a population of 225 neu-
rons (corresponding to the 225 features dij � hi � qj) is indicated
by the intensity of points on a 15 � 15 grid. Because the sources
occupy three positions i, there are three copies of the basis qj in
each panel (corresponding to the three filters hi.) The activity
patterns are sparse; only a relatively small number of units are
active in each representation. Note that because the middle and
the right sources (source 2 and 3, respectively) in this example
were chosen to be identical, the middle and right neural repre-
sentations differ only by a shift.

The procedure for recovering a source from such a represen-
tation is straightforward: the estimate of the left source (source 1)
is simply the summed activity of the left third of the neurons
(those representing features prefiltered by the HTRF correspond-
ing to the leftmost position in space); and likewise for the middle
and right thirds. The HRTF can thus be seen as a kind of “tag” for
grouping together elements from a single source. This suggests
dividing source separation into two conceptually distinct steps
(although in practice the steps occur simultaneously.) In the first
step, the stimuli are decomposed into the appropriate features. In
the second step, the features are tagged and bundled together
with other features from the same source. It is for this bundling
step that the HRTF along with the prior knowledge of source
locations is essential.

The failure of the dense representation to separate sources
(Fig. 4) results from a failure of the first step. Instead of decom-
posing the sources into a small number of features, the dense
representation (Fig. 6C) assumes that each instrument contrib-
uted about equally to the received signal and thus finds a repre-
sentation in which a large fraction of neurons are active. That is,
instead of “explaining” the sources in terms of two harps and a
trumpet, the dense representations also finds some clarinet, some
cello, etc., at all positions. This is intrinsic to the dense solution,
because it finds the “minimum power” solution in which neural
activity is spread among the population (Fig. 1B).

The failure of even the sparse approach when the spectral cues
induced by the HRTF are absent (Fig. 5, leftmost point showing
0° separation) results from a failure at the second step. That is, the
sparse approach finds a useful decomposition at the first step
even without the HRTF, but in the absence of HRTF cues the
active features are not tagged, and thus the features cannot be
assigned appropriately to distinct sources. Other psychophysical
cues relevant for source separation, such as common onset time,

Figure 4. Performance of different separation approaches with three sources. The separa-
tion performance (SNR across sources) is shown as a function of the sum of the “sparseness
index” of the three sources (average over 20,000 sample sets). Note that sparse prior (black)
always outperforms dense prior (gray) and that excellent separation was achieved especially
when the sources were sparsely representable. Also note that the model does not depend
strongly on choosing the basis carefully, as demonstrated by the good performance of the
“combined” example in which a concatenated basis was taken from all the ensembles.

Figure 5. Separation performance for different source locations. Using a typical example of
three novel stimuli (trumpet and two same harp), separation performance ( y-axis) was exam-
ined with all of the possible combinations of the three sources (from 0 to 120 degrees apart;
x-axis). The average performance is shown here under either sparse (black) or dense (gray)
prior. Note that separation was unsuccessful at angle zero because we cannot exploit differen-
tial filtering, whereas the performance gets better as the sources get further apart.

Figure 6. Neural representations underlying source separation. Each panel shows the activ-
ity of a population of 225 neurons, corresponding to the 225 features dij � hi * qj. The intensity
of each dot in the 15 � 15 grid is proportional to the log of the firing rate of each neuron.
Because the sources occupy three positions i, there are three copies of the basis qj in each panel
(corresponding to the three filters hi.). The copies are arranged from left to right for convenience
and separated by vertical lines. However, the arrangement is for purposes of illustration only;
we do not mean to imply any spatial organization of sources within the cortex. The sources are
the same as in the previous figure. A, Sparse representations of the three sources (correspond-
ing to the original spectrograms in Fig. 3) presented in isolation. Only a relatively small number
of units are active in each panel. B, Sparse representation of the mixed sources (input spectro-
gram in Fig. 3). Note that activity is approximately the sum of the activities of the isolated
sources in A. C, Dense representation of the mixed sources. Note that most units are active.
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might provide alternative or additional tags in this same frame-
work. A more general formulation of source separation might
allow tagging on longer time scales, so that a feature active at one
moment might be more (or less) likely to be active the next,
reflecting the fact that sources tend to persist, but we do not
pursue that approach further here.

Experimental predictions
Our model of sparse representations makes at least three experi-
mentally testable predictions.

Optimal feature estimation requires multineuron recording
In this model, the firing rate of a given neuron {ij} is maximized
when there is a perfect match between the stimulus and the fea-
ture of that neuron, i.e., when y � dij. Because the feature dij is
used in the linear reconstruction of the stimulus from the neural
activities (Eq. 9), one might imagine that the optimal stimulus
(i.e., the stimulus that maximizes the firing rate) can be obtained
by estimating the optimal linear decoder of the target neuron
considered alone. Experiments based on this idea have shown
that the optimal linear decoder can sometimes drive neurons in
the auditory cortex to fire vigorously (deCharms et al., 1998).

Surprisingly, this model predicts that the linear estimate of the
decoder obtained in this way is not the optimal stimulus, al-
though the optimal decoder is linear. Instead, finding the optimal
stimulus requires recording from all of the neurons involved in
the representation. This follows from the fact that we have as-
sumed that the features are not orthogonal (see also Appendix
A.2). Note that in this model, optimal decoding (Eq. 9) need not
take neural correlations into account, even when they are present.

This first prediction is illustrated by a simulation (Fig. 7). The
y-axis shows the firing rate of a target neuron (normalized to its
maximum firing rate) in response to the presentation of the stim-
ulus that matches the optimal linear decoder constructed by re-
cording the activity of a target neuron and a variable number of
other neurons. When the optimal linear decoder is estimated

from only the target neuron, the firing rate is submaximal. As the
number of neurons used to estimate the optimal linear decoder is
increased (x-axis), the response of the target neuron converges to
unity, indicating that the optimal decoder has converged to the
feature of the target neuron.

Figure 7 represents a novel and testable prediction of the mod-
el: jointly estimating the optimal linear decoder from a popula-
tion of neurons should yield a stimulus that is closer to optimal.
Moreover, it also leads to a novel experimental approach for
finding the optimal stimulus. Note that although in principle the
activity of all neurons involved in the representation must be
recorded, in practice the activity of even a few can be useful. With
modern techniques (e.g., tetrodes) for isolating the activity of
several nearby neurons, this approach might be practical.

Linear decoding and nonlinear encoding
A second testable prediction of the model is that there should be
an asymmetry between encoding and decoding: the optimal en-
coding function is nonlinear, but the optimal decoding function
is linear. Here “decoding” refers to the process of “reading out” a
neural representation (e.g., by forming an estimate or recon-
struction of the stimulus), whereas “encoding” refers to the pro-
cess by which the nervous system constructs a pattern of neural
activities from a stimulus. Surprisingly, however, this asymmetry
emerges only for populations of neurons; the optimal linear en-
coder and decoder of an isolated neuron perform about equally,
and both underperform the optimal nonlinear decoder (Fig. 8).

The fact that optimal decoding of a neuronal population is
linear (i.e., that the optimal linear decoder of the neuronal pop-
ulation response provides perfect reconstruction of the stimulus
under the model, so that no nonlinear model can do better) is a
direct consequence of our fundamental assumption (Eq. 9) that
the neural representation is a linear combination of features. The
linearity of neural decoding does not imply that the neural en-
coding function (the inverse transformation from the stimulus to
the response) need be linear, and in general it is not.

Sparseness induces a nonlinear encoding function; more pre-

Figure 7. Prediction 1: stimulus optimization requires multineuron recording. The y-axis
shows the simulated firing rate of a target neuron (normalized to its maximum firing rate) in
response to the presentation of the optimal linear decoder constructed by recording the activity
of a target neuron and a variable number of other neurons. When the optimal linear decoder is
estimated from only the target neuron, the firing rate is submaximal. As the number of neurons
used in this simulation to estimate the optimal linear decoder is increased (x-axis), the response
of the target neuron converges to unity, indicating that the optimal decoder has converged to
the feature of the target neuron.

Figure 8. Prediction 2: linear decoding outperforms linear encoding for multineuron but not
single neuron experiments. A, The mutual information between the response of a simulated
neuron and the stimulus (Total) was compared with the mutual information between the
stimulus and the optimal linear estimate of the stimulus obtained from the activity of a single
neuron (Dec) and between the actual response and an optimal linear estimate of the response
obtained from the stimulus (Enc). The two linear estimates were comparable, and both cap-
tured only a fraction of the total information, indicating that encoding and decoding are com-
parable for single neurons. B, Decoding outperforms encoding in a simulated multineuron
experiment. The reconstruction quality is plotted as a function of the optimal linear decoder
(dark curve) or the optimal linear encoder (light curve). The reconstruction quality is a normal-
ized measure of the accuracy of reconstruction, defined as 1 ���error�2/�signal�2�; see Mate-
rials and Methods for details. Encoding and decoding perform comparably when only a few
neurons are recorded, but as the number of neurons recorded increases, the reconstruction
quality of decoding grows faster. When the activity of all neurons involved in the representation
is recorded (75 in this simulation), decoding is perfect.
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cisely, it induces a piecewise linear encoding function (Fig. 9).
Sparseness implies that only at most Nrow out of the possible Ncol

features dij are active in the representation of a particular stimu-
lus; the precise subset of active neurons changes for different
stimuli. Piecewise linearity arises because the encoding function
is linear for all stimuli that activate the same subset of features,
but changes for different subsets (see also Appendix A.2). Note
that not just any nonlinear function can be implemented. For
example, any saturating nonlinearities must be introduced by a
preprocessor, because doubling the stimulus y necessarily dou-
bles the neural representation c, i.e., y � Dc implies 2y � D(2c).

The prediction that there is an asymmetry between the linear-
ity of the decoding function and the nonlinearity of the encoding
function can be tested experimentally (Fig. 8). Given an ensemble
of stimulus–response pairs (i.e., the neural responses to an en-
semble of sounds) obtained from a population of neurons, the
model predicts that a linear stimulus reconstruction approach
(i.e., a decoding model) will outperform a linear “forward” (i.e.,
encoding) model, but only if the optimal linear reconstructors
are estimated from a population of neurons.

The idea that a linear approximation is better suited for the
neural decoding than encoding function was first exploited to
estimate the information rate of fly visual neurons (Bialek et al.,
1991). In contrast, our model predicts that, if the neural repre-
sentation is sparse and overcomplete, then the asymmetry should
emerge only in multineuron recordings. To our knowledge, this
asymmetry has not been tested for high-level auditory represen-
tations. Our model thus makes a strong prediction: linear decod-
ing does not provide an advantage over linear encoding for single
neuron experiments, whereas the former outperforms the latter
for multineuron experiments.

Context dependence of STRFs
A third prediction that follows from the piecewise linearity of the
encoding function is that the linear component of receptive fields
should depend on the acoustic context. Following conventional
usage in auditory physiology, we will use the term STRF to refer
only to the linear component of the encoding function, although
the encoding function itself may be highly nonlinear (Kowalski et
al., 1996; Theunissen et al., 2000, 2001). (In visual physiology,
STRF is used to refer to the “spatial temporal receptive field,” but

the quantities are analogous.) The STRF is the analog (in a high-
dimensional input space) of the slope of the tuning curve of a
neuron in one dimension.

In an experimental setting, piecewise linearity predicts that
the STRF should depend on the acoustic context. We define the
acoustic context of a feature dij with respect to a stimulus y as the
collection of other features activated simultaneously by that stim-
ulus. In music, for example, the features tend to resemble musical
notes, and the acoustic context can be thought of as the set of
notes (e.g., in a chord) that accompany a given note. Figure 10
shows the STRF of the same neuron (a trumpet feature) in two
different contexts (either clarinet or flute.) The gross features of
the STRF (e.g., the excitatory band around 880 Hz) are preserved
in both contexts, but the secondary features (e.g., the addition of
an inhibitory sideband) is context sensitive. Changes in the STRF
for different features and different contexts can be larger or
smaller than in this example. Stimulus context thus changes the
neural encoding function, suggestive of the nonclassical receptive
field modulation observed in visual and auditory cortexes (David
et al., 2004; Valentine and Eggermont, 2004).

Context dependence as defined here is stronger than simple
nonlinearity. Specifically, the prediction is that there should exist
extended subregions of stimulus space in which the encoding
function of a given target neuron is one linear function and across
some boundary in stimulus space switch to a second linear func-
tion. These boundaries are demarcated by the activation of an-
other (nontarget) neuron in the population and the deactivation
of a second (nontarget) neuron (Fig. 9). This prediction could be
tested using a multineuron recording technique.

The locally linear encoding induced by sparseness may help
reconcile some of the apparent contradictions in the auditory

Figure 9. Encoding is nonlinear (piecewise linear). A, Three features in two dimensions
constitute an overcomplete basis. A sample signal y is indicated with an asterisk. B, Tuning
curves for the three features are piecewise linear. The firing rate of each of the three units in A is
given as a function of angle for stimuli of unit length; the point y in A is at �45°. Because the
sample space is two-dimensional, any given point is represented by at most two active neurons.
Decoding is linear: the point y is recovered by a weighted sum of the features, with the corre-
sponding neural activities constituting the weights. Encoding, however, is nonlinear: the slope
of the activation functions of all active neurons can change at the boundaries, whenever any
neuron becomes active or inactive. The basic intuition shown here generalizes to the other
examples in this paper, in which the dimensionality of the space (given by the number of
elements in the spectrogram) is much higher. Figure 10. Prediction 3: dependence of STRF on context. A, Spectrogram of trumpet feature,

showing a strong fundamental �880 Hz and some higher harmonics. B, C, The STRFs corre-
sponding to the feature in A when that feature is activated in two different contexts (clarinet or
flute played simultaneously), derived under the assumption of a sparse neural representation.
The STRF provides the encoding from the stimulus to neural activity. The color at any point of the
STRF indicates the value (in spikes per second) of the kernel, which is convolved with the
spectrogram of the stimulus to generate a neural response. Under the sparse assumption,
the encoding is piecewise linear, and the STRFs shown are two out of the many possible pieces.
The STRF is obtained from the appropriate row of the matrix Dk

�

(see Appendix A.3). D, The
difference between the two spectrograms. Note that they show the same basic harmonic struc-
ture, but differ in details such as the relative contributions of the excitatory and inhibitory
sidebands. The differences can be as large as the STRFs themselves.
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literature. STRFs obtained using a “moving ripple” basis can pre-
dict responses to linear combinations of basis elements (Kowalski
et al., 1996). However, linear encoding (STRF) models fail to
predict neural responses when the stimulus domain is extended
to include a wide selection of complex sounds (Linden et al.,
2003; Machens et al., 2004), consistent with the idea that ripples
represent a subspace within which encoding is linear. Context
sensitivity may also provide an explanation for a proposed neural
correlate of comodulation masking release in which the addition
of a pure tone can suppress the response to temporally modulated
noise (Nelken et al., 1999); this form of contextual modulation
cannot be explained by any purely linear encoding model.

Discussion
Our main result is that the appropriate “sparse” neural represen-
tation implicitly separates a mixture of sound sources into its
constituent auditory streams. In this model, sources at different
positions in space were separated with only monaural informa-
tion by exploiting the differential filtering imposed by the HRTF,
under the assumption that the source locations have already been
identified by other mechanisms. This model provides a possible
explanation for an important question about cortical organiza-
tion: Why are there so many more neurons in the auditory (or
visual) cortex than in the cochlea (or retina)? The answer we
provide, motivated by the ability of an overcomplete sparse rep-
resentation to separate sources, is potentially quite general and
may be applicable to other brain regions as well.

This model was motivated foremost by the computational
demands of source separation. Source separation is a complex
computation, and we could no more expect to solve the whole
problem in its entirety here than we could expect to solve com-
pletely its visual analog (scene segmentation) or any of the many
other challenging problems in computational vision. We have
instead concentrated on a restricted form of the problem involv-
ing only the spatial cues introduced by the HRTF, with the expec-
tation that the same framework can be generalized to understand
how some other cues might be used.

Sparseness provides a powerful and useful constraint on neu-
ral activities. Our results complement and extend previous work
on finding features that permit an efficient representation of au-
ditory or visual scenes (Bell and Sejnowski, 1997; Olshausen and
Field, 1997, 1996; Schwartz and Simoncelli, 2001; Lewicki, 2002;
Klein et al., 2003; Smith and Lewicki, 2006). In our framework,
the HRTF “tags” these features so that they can be assigned to the
appropriate source. Other psychophysical cues important for
acoustic stream segregation, such as common onset time, could
be used in a similar way.

Efficient coding and sparseness
Our approach is compatible with the “efficient coding hypothe-
sis” (Barlow, 1961), according to which the goal of sensory pro-
cessing is to construct an efficient representation of the sensory
environment. Building on these results, we used NMF to derive a
set of basis elements with which auditory stimuli could be repre-
sented sparsely. Although we did not test bases obtained using
other approaches, we do not expect that our results would be
sensitive to the particular method used to find the basis; any
sparse basis would likely have worked.

The principle of efficient, or sparse, coding has been used to
predict receptive field properties of both auditory and visual neu-
rons (Olshausen and Field, 1996; Bell and Sejnowski, 1997; Simo-
ncelli and Olshausen, 2001; Lewicki, 2002; Smith and Lewicki,
2006). However, the focus of the present work is not on the

receptive field properties themselves but rather on how the re-
sulting sparse representation can subserve a computation. Our
predictions are therefore not about the detailed structure of re-
ceptive fields but rather about how receptive fields interact.

The motivation for sparseness here is not coding [or meta-
bolic (Levy and Baxter, 1996; Laughlin and Sejnowski, 2003)]
efficiency per se, but rather performance on a particular compu-
tational problem: source separation. There are contexts in which
coding efficiency imposes important constraints on representa-
tion; for example, the retina compresses visual information col-
lected at 10 8 photoreceptors into a signal that is carried by only
�10 6 fibers in the optic nerve. For source separation, however,
sparseness provides a mathematical instantiation of Occam’s Ra-
zor: it allows a search for the most likely interpretation to be
conducted by searching for the sparsest interpretation.

Sparse encoding implies that most stimuli should elicit only
modest firing in most neurons, as has been observed experimen-
tally for both simple and complex auditory and visual stimuli
(Vinje and Gallant, 2000; DeWeese et al., 2003; Machens et al.,
2004), but it does not imply that responses must be weak for all
stimuli. Sparseness implies merely that stimuli elicit only a small
number of spikes across the neuronal population; indeed, a neu-
ron encoding some particular feature d will fire maximally when
the stimulus d is presented. Sparseness in this model is therefore
a constraint on the activity of the population of neurons involved
in a representation, rather than on the activity of any single neu-
ron. Our results are thus fully consistent with experiments indi-
cating that it is sometimes possible to optimize stimuli online to
obtain high firing rates (deCharms et al., 1998; Barbour and
Wang, 2003), because in our framework such a stimulus is the
feature associated with the neuron.

Directly assessing the sparseness of a neuronal representation
experimentally is difficult. The key issue is how many neurons (or
spikes) participate in the representation of a typical stimulus.
Ideally this would be measured by recording all spikes from all
neurons simultaneously, but this is not possible using the exper-
imental techniques currently available. Nevertheless, there is
growing evidence that natural auditory (DeWeese et al., 2003;
Machens et al., 2004) and visual (Baddeley et al., 1997; Vinje and
Gallant, 2000) stimuli activate only a relatively small number of
neurons (Olshausen and Field, 2004). Thus the representational
sparseness assumed by this model should be viewed as at least
provisionally consistent with the current experimental evidence
about cortical representations.

Overcomplete representations as a model of cortex
Although there is nothing in the model that explicitly ties it to one
or another brain area, we think it most likely that, at least in
mammals, the operations we describe occur in the cortex, rather
than at subcortical stations. First, receptive fields in auditory cor-
tex are heterogeneous and often have the broad and complex
spectrotemporal structure (Sutter, 2000) required to exploit the
HRTF.

Second, and more significantly, auditory cortex has the char-
acteristics expected from an overcomplete representation. There
are �30,000 auditory nerve fibers but more than 1000 times as
many auditory cortex neurons. Assuming that the “representa-
tional fidelity” (the amount of information that can be repre-
sented by a single spike) of neurons in cortex is comparable with
that at the periphery, the “representational capacity” of cortex is
far in excess of what is needed to form merely a complete repre-
sentation. This model suggests a way in which this excess repre-
sentational bandwidth can be used for computation, instead of
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merely to overcome neuronal noise, as has sometimes been
proposed.

Although we do not know how sparse cortical representations
are achieved, it seems likely that the underlying circuitry involves
lateral interactions. Indeed, “sparsification” is similar to divisive
normalization approaches, which are motivated by both circuit
and computational considerations (Schwartz and Simoncelli,
2001). Explicit circuit dynamics and connection weights can be
obtained using gradient descent to minimize the total neural ac-
tivity in Equation 14.

Model predictions
We have identified three clear experimental predictions of the
model. First, the optimal linear decoder estimated from an exper-
iment in which the activity of multiple neurons are recorded
should maximize the firing rate of a target neuron. Second, there
should be an asymmetry between the performance of the optimal
linear encoder and decoder, but this asymmetry should become
evident only in interpreting multineuron recording experiments;
the model predicts that the optimal linear encoder and decoder in
a single neuron experiment both underperform the “true” opti-
mal (i.e., nonlinear) decoder. Finally, the STRF should be dy-
namically influenced by acoustic context. These predictions can
be used to test (and falsify) the model.

Perhaps the most surprising prediction of this model is how
stimulus optimization for a target neuron can improve by record-
ing from other neurons involved in the representation. To our
knowledge, online stimulus optimization using data from more
than one neuron has not been previously proposed but could be
practical using modern multineuron recording techniques.

We have assumed that the neural decoding function (the
transformation from the neural response to the stimulus) is lin-
ear. However, we have shown that sparseness implies that the
neural encoding function (the inverse transformation from the
stimulus to the response) is in general nonlinear (piecewise lin-
ear). This asymmetry, which emerges only in multineuron re-
cording experiments, is a strong and testable prediction of the
model.

This asymmetry further implies the context dependence of the
STRF. We speculate that this may explain why linear (STRF)
encoding models work well in restricted domains (Kowalski et al.,
1996) but fail for richer stimulus ensembles (Linden et al., 2003;
Machens et al., 2004). However, context dependence has not yet
been tested directly.

Relationship to independent component analysis
Our formulation of the source separation problem (Eq. 7) differs
in two respects from the one usually considered in the indepen-
dent component analysis (ICA) literature. First, we have assumed
prefiltering of each source by a known filter h, whereas in the
usual formulation, the weighting of each source is given by an
unknown scalar. Second, in most formulations the receiver is
assumed to have access to the sources via several sensors, each
of which is exposed to a different (linear) combination of the
sources, whereas here we assume only a single sensor with
input y.

Most approaches to solving such multisensor formulations
focus on recovering an “unmixing matrix” which inverts the mix-
ing matrix governing the weighting of each source at each sensor.
In such cases, it is generally sufficient to assume simply that the
sources are statistically independent (Comon et al., 1991;
Comon, 1994; Bell and Sejnowski, 1995; Belouchrani et al., 1997;
Amari and Cichocki, 1998). If, however, there is only a single

sensor, the problem is degenerate and such approaches fail: sep-
arating multiple sources from a single sensor requires assump-
tions stronger than simple independence (Cauwenberghs, 1999;
Hochreiter and Mozer, 2001; Roweis, 2001; Jang and Lee, 2003;
Smaragdis, 2004). The intermediate case (at least two sensors but
more sources than sensors) simplifies the problem considerably
(Rickard and Dietrich, 2000; Bofill and Zibulevsky, 2001; Linsker,
2001), because binaural cues as well as monaural ones can be
used.

Recent advances in ICA have emphasized the utility of sparse
overcomplete representations for source separation problems in
acoustic, visual, and other domains (Farid and Adelson, 1999; Lee
et al., 1999; Lewicki and Sejnowski, 2000; Zibulevsky and Pearl-
mutter, 2001; Levin and Weiss, 2004; Li et al., 2004). Here we
have built on these ideas and developed a novel approach to
separating multiple “augmented” (prefiltered) signals combined
at a single sensor.

Our framework can be generalized to exploit other cues used
in single sensor separation, such as common onset time. It can
also readily be extended to make use of binaural information.
Each HRTF function is made single-input two-output, and the
lengths of the column vectors corresponding to the post-HRTF
dictionary elements and the observation vector are doubled. In-
teraural time and level disparity can then be used to separate
sources. Information from two (or more) sensors can thus be
naturally incorporated.

HRTF and source separation
The model assumes that sources have a statistical structure con-
sisting of spectral correlations that can be exploited by filtering by
the HRTF. One novel contribution of this work is its specific
proposal for how the HRTF can be used for source separation, a
process related to but distinct from sound localization. Spectral
cues are not strictly required for sound localization: binaural cues
can provide robust cues even in the absence of spectral cues.
Conversely, source separation can proceed when spectral cues are
weak, or indeed, even when spatial cues are completely absent, as
for example when picking out a violin from within a concerto
played over a single speaker. This illustrates a general principle:
no single cue is essential to source separation, and the auditory
system will promiscuously exploit any cues that are available.

Nevertheless, it is clear that HRTF cues, when present, help in
source separation (Yost et al., 1996). We have shown how neural
systems can exploit these cues using sparse representations. We
speculate that sparseness may represent a general adaptation used
by the nervous system to separate acoustic sources, and that sim-
ilar principles may be also involved in source separation in other
modalities, such as olfaction.

Appendix
A.1. Notes on regularizers
L0 minimization
Minimizing sparseness in the L1 sense is not the only possible
choice. One natural alternative is the L0 norm, which minimizes
the total number of active neurons (the total number of nonzero
activities cij) rather than the total number of spikes. Although this
constraint also seems biologically sensible, it leads to a computa-
tionally intractable (NP-complete) combinatorial problem (Do-
noho and Elad, 2003); moreover, in many cases it leads to the
same solution as the minimum L1 solution (Li et al., 2004), par-
ticularly in the presence of a noise model. We therefore consider
only the L1 solution here.
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Conditioning of dense representation
From Equation 15 it is clear that the uniqueness of the solution
depends on the invertibility and condition number (ratio of larg-
est to smallest singular values) of D, whose columns dij � hi � qj

depend in turn on both the filters hi and the source elements qj. In
particular, if there is no filter hi, as in the usual formulation of
source separation, the columns of D are identical, and the solu-
tion is therefore degenerate. The greater the difference between
the filtered copies of the sources (the columns of D), the smaller
the condition number of D and the more numerically stable the
problem.

Probabilistic interpretation of regularizers
Interpreted probabilistically, the regularizers on neural repre-
sentations (Eqs. 14 and 15) correspond to maximum likeli-
hood estimates using different a priori assumptions about the
processes generating the stimuli, whose estimates are repre-
sented as the neural activities participating in a representation
(Fig. 1 D). The pseudoinverse assumes that the underlying
causes represented by the activities cij were drawn from a
Gaussian distribution, whereas the sparseness regularizer as-
sumes instead a Laplacian distribution: p�cij� � e��cij�. Because
a Laplacian distribution has more elements very close to (and
very far from) zero than does a Gaussian with the same vari-
ance, it corresponds to a sparser description in terms of cij.
Note that without a noise term, the maximum likelihood esti-
mates using any prior yield perfect (zero reconstruction error)
representations of the stimulus; the prior here is on the distri-
bution of the underlying causes represented by the coefficients
cij, rather than on the distribution of reconstruction errors (as
for example in robust fitting methods). Only when a noise
term is added (Eq. 1) do the neuronal activities cij cease to
represent the stimulus perfectly.

A.2. Asymmetry of sparse representations
Why does an overcomplete sparse representation predict an
asymmetry between encoding and decoding (see Results, Lin-
ear decoding and nonlinear encoding)? To understand this, let
us begin by considering the more familiar case of a complete
(but not overcomplete) orthonormal representation, such as a
Fourier or ripple basis. In this case, there is perfect symmetry
between the encoding and decoding transformations. (These
transformations are referred to as “analysis” and “synthesis”
in the wavelet literature.) That is, if the columns of D in the
decoding equation y � Dc (Eq. 13) are orthonormal, the in-
verse (encoding) transformation is given by c � DTy, where
we have used the fact that the inverse of an orthonormal ma-
trix is its transpose, DT � D �1. In this case, the encoding and
decoding filters (the rows and columns of D) are identical.
This explains the familiar symmetry between the forward and
inverse Fourier transform, in which the rows and columns of
D are sinusoids.

If the columns of a square matrix D are not orthonormal, its
inverse (if it exists) is not equal to its transpose. However, the
encoding transformation c � D �1y is still linear, because it can
be expressed as a linear combination of the columns of D �1. Even
in the overcomplete case (Eq. 15), linearity of encoding is pre-
served if the dense representation is used, because in that case the
encoding filters are the columns of the pseudoinverse D�.

In the sparse overcomplete case, asymmetry arises because the
inverse transformation is in general nonlinear. Here, the repre-
sentation is found by solving the optimization problem of Eq. 14.
Note that this in turn gives a reason that stimulus optimization

requires multineuron recordings (see Results, Optimal feature
estimation requires multineuron recording). Specifically, be-
cause the neural responses cannot be explained by a single (or a
global) linear encoding function, the feature (or the stimulus that
elicits the maximum response) cannot be estimated correctly by a
linear regression using single unit data.

A.3. Context dependence of STRFs
To understand the context dependence of STRFs (see Results,
Context dependence of STRFs), we consider the encoding func-
tion associated with the sparse representation of a particular
stimulus yk. Consider the “packed matrix” Dk, whose columns
are the subset of features involved in the sparse representation of
the stimulus yk, i.e., only the columns corresponding to the non-
zero elements of ck. This matrix satisfies the following decoding
relationship:

yk � Dkc�k , (16)

where c�k consists of ck without zero elements. However, because
of the sparseness (L1) prior, the matrix Dk is at most full-rank and
is constructed from only at most Nrow features. It is thus not
overcomplete, and thus the encoding can be specified by a matrix
using the pseudoinverse:

c�k � Dk
{yk . (17)

Thus, the encoding function is continuous and piecewise linear,
with the linear segments defined by pseudoinverses Dk

{, and the
discontinuities in the first derivative occurring whenever the
stimulus activates (or deactivates) a new feature (i.e., an element
of c becomes nonzero or zero) and thereby changes Dk.

The STRF for the ith neuron is then obtained from the ith row
of the pseudoinverse of the packed matrix Dk. (Recall that, fol-
lowing convention, we use the term STRF to refer only to the
linear component of the encoding function from stimulus to
response.)

Three comments on the STRF estimation are in order (see
Materials and Methods, Context dependence of STRFs). First, we
note that constructing the matrix Dk requires knowledge of the
solution ck, so that this does not actually constitute an algorithm
for finding ck. Second, in the special case of the dense represen-
tation, both encoding and decoding are linear. In this case, the
encoding function for any stimulus (Eq. 11) is simply the pseudo-
inverse D� of the full matrix D.

Finally, we note the fact that even if two STRFs obtained from
the response of a single neuron to two different stimulus ensem-
bles differ, and each accounts perfectly for the data to which it was
fit, this does not rule out the possibility that there might exist
some third STRF that perfectly fits the amalgamation of the two
datasets. Consider two stimuli yk and yk�, which activate only
features in ck and ck�, respectively. The pseudoinverse
Dk

{ corresponding to the first stimulus will be valid (Eq. 17) for
any stimulus composed of any subset of features that are nonzero
in ck but will not be valid for any features that were not active.
Therefore, any stimulus consisting of sums of features in the
union of the feature sets ck and ck� will yield incorrect results if
either of the corresponding packed pseudoinverse matrices are
used. However, a new pseudoinverse matrix constructed from
features in the union of the feature sets ck and ck� could yield
correct values for a superset of the stimulus ensembles for which
either of the original two STRFs were valid.

Such supersets can only be constructed from a number of
features that is limited by the rank of D. That is, there does not
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exist a matrix Dk
{ that can be used in (Eq. 17) to generate the

correct c for all stimuli. For the example in Figure 10, we
confirmed that there does not exist an STRF that includes both as
special cases.
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