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Abstract

Neuronal activity in response to a fixed stim-
ulus has been shown to change as a func-
tion of attentional state, implying that the
“neural code” also changes with attention.
We propose an information-theoretic account
of such modulation, namely that the ner-
vous system adapts to optimally encode sen-
sory stimuli while taking into account the
changing relevance of different features. We
show using computer simulation that such
modulation emerges in a coding system in-
formed about the uneven relevance of the
input features. We present a simple feed-
forward model that learns a covert atten-
tion mechanism, given input patterns and
coding fidelity requirements. After optimiza-
tion, the system gains the ability to reorga-
nize its computational resources (and cod-
ing strategy) depending on the incoming at-
tentional signal, without the need of multi-
plicative interaction or explicit gating mecha-
nisms between units. The modulation of ac-
tivity for different attentional states matches
that observed in a variety of selective atten-
tion experiments. This model predicts that
the shape of the attentional modulation func-
tion can be strongly stimulus-dependent. The
general principle presented here accounts
for attentional modulation of neural activ-
ity without relying on special-purpose archi-
tectural mechanisms dedicated to attention.
This principle applies to different attentional
goals, and its implications are relevant for all
modalities in which attentional phenomena
are observed.
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1 Introduction

Adaptation in the nervous system occurs at
several time scales, from the fast changes in
spiking patterns to the long-term effects of
development and learning. One of the most
intriguing types of adaptation is the modifica-
tion of neural coding strategies related to se-
lective attention. The fact that attention can
be covertly shifted to different aspects of a
stimulus to improve their detection and dis-
crimination (Downing, 1988) indicates that
the nervous system is not just filtering out
features in a fixed manner, but adapting its
function according to some objective. This
adaptation is expressed as an attentional-
state dependent modulation of neural activ-
ity. Attentional modulation of activity has
been characterized at different levels, from
whole brain (Heinze et al., 1994; Hopfinger
et al., 2000; Corbetta and Shulman, 2002)
to single cell (Moran and Desimone, 1985;
Luck et al., 1997; Treue and Maunsell, 1999;
McAdams and Maunsell, 1999). In contrast,
theoretical accounts of these phenomena are
still a matter of debate, and would greatly
benefit from models that relate these effects
to general coding principles.
Traditional accounts of receptive field for-

mation assume equal relevance of all features
of a stimulus. Attempts to include the adapt-
ability necessary for dealing with uneven rel-
evance (e.g., for attention-related phenom-
ena) usually include mechanisms tailored to
the precise phenomenology, such as gating
or shifting circuitry (Olshausen et al., 1993;
Deco and Zihl, 2001; Heinke and Humphreys,
2003). A different approach is to find high-
level principles that give rise to the phenom-
ena observed during changing attentional
state. The literature provides a few examples
of this approach, namely models in which
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various types of uncertainty are included in a
framework of optimal inference and learning
(Dayan and Zemel, 1999; Dayan et al., 2000;
Yu and Dayan, 2005; Rao, 2005). Our pro-
posal here is in some sense less radical than
the assumption that attention subserves op-
timal inference, in that we account for the
sensory codes in question using the optimal
coding framework, a framework which has
been successfully applied to a variety of non-
attentional sensory coding phenomena (Atick,
1992).
We hypothesize that the nervous system

uses an optimal code for representing sen-
sory signals, and that fidelity requirements
of the code change based on top-down infor-
mation. These conditions imply shifts in the
neural code and changes in response prop-
erties of single neurons that altogether can
be regarded as a global resource allocation.
Using computer simulation we explore the ef-
ficient representation of sensory input un-
der the assumption of limited capacity and
changing nonuniform fidelity requirements.
These simulations show that: (i) The mod-

ulation of activity of the simulated units
matches that observed in animals during se-
lective attention tasks. (ii) The magnitude of
this modulation depends on the capacity of
the neural circuit. (iii) The behavior of a sin-
gle neuron cannot be well characterized by
measurements of attentional modulation of
only a single sensory stimulus. (iv) Modula-
tion of coding strategies does not require spe-
cial mechanisms: it is possible to obtain dra-
matic modulation even when signals inform-
ing the system about fidelity requirements en-
ter the system in a fashion indistinguishable
from sensory signals. (v) Even a simple feed-
forward network can perform sophisticated
and dramatic reallocation of processing re-
sources.

2 Methods

Network structure. An auto-associative
network was constructed consisting of five
layers connected in a feedforward fashion
(Fig. 1B), following Jaramillo and Pearlmutter
(2004). The number of units in each layer
was 256–20–10–20–256, respectively. Each
unit received inputs from all units in the

previous layer, in addition to two attentional
signals, displayed as a single arrow per layer
in Fig. 1B. This attentional input was the
same for all layers and its role depended
on the cost function to be minimized as
explained below. There were no lateral
connections within units in a layer. The
activity in the input and output layers was
represented as an image of 16×16 pixels.

Unit model. A firing rate model was used in
which the output of each unit was calculated
as the weighted sum of the inputs passed
through a saturating nonlinearity, as follows:

ri = s
(

∑

j

wij rj + bi

)

= s
(

∑

j′

wij′ rj′ +
∑

j′′

wij′′ rj′′ + bi

) (1)

where the sum is over all units from the pre-
vious layer (indexed by j′) and the attentional
inputs (indexed by j′′). The saturating func-
tion was s(x) = a tanh(bx) with a = 1.716, b =
0.667. The activity of unit i is denoted ri and
the parameters wij correspond to the strength
of the connection from unit j to unit i. Note
that each unit i also included a bias term bi.
The connection strength wij from unit j to
unit i was real valued and unbounded.

Stimulus statistics. The set of patterns
used during optimization consisted of 20, 000
monochromatic 16×16 pixel images. Pixel in-
tensity values had zero mean and standard
deviation σ = 1/3. The images were cre-
ated by convolving (filtering) white Gaussian
noise images with a rotationally symmetric
2D Gaussian with σfilter = 2. Edge effects

were avoided by extracting only the 16×16
center of the resulting image. These images
were then scaled to have the desired variance.

Attentional input. The attentional signal
consisted of a two-element vector with ele-
ments in the range [−1, 1]. For each opti-
mization step, this input was randomly drawn
from a uniform distribution over the possible
range. After optimization, this signal enters
each unit in the same fashion as signals from
other layers. It is only through the optimiza-
tion process that its role is defined.
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Optimization. The optimization process
consisted of finding the set of weights and
bias parameters that minimize the cost func-
tion E = 〈Ep〉 where the error for one input
pattern and attentional state is

Ep =
∑

k

ck(p)
(

yk(p) − dk(p)
)2

(2)

in which k indexes locations in the 16×16
grids holding the stimulus and its reconstruc-
tion, ck(p) defines the importance of that par-
ticular location (analogous to the intensity of
an attentional spotlight), yk(p) is the output
of the network, dk(p) is the desired output,
which is in our case the same as the input,
and p represents the complete information
coming into the system at one point in time,
i.e. the input image as well as the top-down
attentional signal. The expectation 〈·〉 is taken
over p.
The gradient was calculated using back-

propagation (Rumelhart et al., 1986) of the
weighted error defined in Equation 2, and op-
timization used online gradient descent with
a weight decay term of 10−6 and a learning
rate η = 0.005. All weights were plastic during
learning, and the attention coefficients in the
penalty function formed a simple soft mask:

ck(p) =
1

1 + m2 ‖~k − ~a(p)‖2
(3)

with ~a(p) being the attentional input (in our
case, a two-dimensional vector representing

the center of attention) and ~k being a loca-
tion in the plane. The width of the attentional
spotlight was set by m, which was held con-
stant at m = 12 in our simulations.
Noise was injected into the bottleneck units

(before the nonlinearity) during optimization
in order to limit the capacity of the system.
The noise level was σNB = 0.1, except in
Fig. 7C and D, in which additional values in
the range σNB ∈ [0.0125, 1.6] were also used.

Testing performance. The performance of
the system at encoding and decoding the in-
put was measured using independently gen-
erated random patterns. For performance
comparison (Fig. 1C), a network that used
a flat penalty function ck(p) = 1 was also
trained. The error in Fig. 1 and 7 was the
absolute difference between input and output
pixel values.

Finding preferred stimuli. To calculate the
stimuli that maximally drive each unit in the
bottleneck layer for a particular attentional
state, we first generated 106 random white
Gaussian images and found the activation of
the unit of interest for each of these patterns
(keeping the attentional state fixed). The pre-
ferred stimulus was defined as the average of
these random patterns weighted by the activ-
ity produced in the unit of interest. The anti-
preferred stimulus was defined as the nega-
tive of the preferred stimulus.

3 Results

The task of the network of Fig. 1B was to en-
code its input (a monochromatic image) into a
compressed representation, and decode that
representation, with minimal error. An addi-
tional input (a two-element vector denoted in
Fig. 1B as A) informed the system about the
current attentional state. Attentional states
differed in that selected regions were pref-
erentially reconstructed with higher quality
than the rest, but these regions were not ex-
plicitly represented by any signal after op-
timization. Each unit computed its output
as the weighted sum of its inputs passed
through a saturating nonlinearity. The re-
sults presented in the following sections cor-
respond to measurements on the system af-
ter the optimization procedure has found the
appropriate connection strengths. Any mod-
ulation is due only to changes in activity and
not to changes in the structure or connection
strengths of the network.

Reallocation of resources emerged
naturally

First, it was verified that some regions of the
input image were in fact reconstructed bet-
ter than others depending on the attentional
state. An example of this uneven perfor-
mance is presented in Fig. 1A. Here, the input
image remained fixed as the attentional input
changed. The dashed circles indicate those
regions for which preferential reconstruction
was requested. We should keep in mind that
the attentional input consisted only of two
additional values (which the network will in-
terpret as the center of attention), and that

3
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Figure 1: Reallocation of resources was observed when attentional signal changed. (A) Ex-
ample of reconstruction of a single input pattern and four different attentional states as
indicated by the dashed circles. Error is lower for attended locations. (B) Structure of the
feedforward network used in the simulations. For each unit, attentional inputs (after training)
are indistinguishable from sensory inputs. (C) Mean over patterns of position-specific error
for one attentional state, compared against that of a system with no attentional signal. The
white region in the image on the right indicates lower error when the system makes use of
the attentional signal.

these signals entered each layer the same
way as feedforward (sensory) inputs. The re-
gions represented by the dashed circles were
not explicitly represented by any signal in the
network during this simulation (only during
optimization, through the coefficients ck in
Equation (2)). As expected, lower error was
achieved for those regions closer to the center
of attention.
After confirming that the system’s process-

ing was dependent on attentional state, we
asked how these results compared to those
from a classical model in which there is
no informing signal. Fig. 1C compares the
mean reconstruction performance of a system
which ignores the informing signal with a sys-
tem attending to the bottom-left corner of the
input image. The difference shows that re-
construction was better for attended regions
but worse for unattended ones.

Preferred stimuli of bottleneck
units was dependent on attentional
state

Results presented in this section concern the
units from the bottleneck layer. Activity from
these units represent a lossy encoding of the
input image. Fig. 2 shows the stimulus that

maximally drove each of these units at dif-
ferent attentional states, as indicated by the
dashed circles. Results are clearly dependent
on attentional state, with preferred stimuli
containing sharper edges in regions closer to
the center of attention.

Activity of bottleneck units was
modulated by non-sensory signals

How was the activity in the bottleneck neu-
rons affected by the attentional signals?
Fig. 3 shows maps of activity created by fix-
ing the stimulus and moving the center of at-
tention around the image. The intensity at
each point in the map represents the activity
of one unit in the bottleneck, normalized in
the range of activities observed for that par-
ticular stimulus. The bars between the two
rows of maps represent the range of activi-
ties achieved in each condition. The pattern
representing activity modulation was clearly
different for each unit. Furthermore, the
modulation of a unit’s activity was dependent
on the stimulus. For example, for unit U1,
higher changes in activity occurred when at-
tention shifts from left to right or from top to
bottom, depending on the stimulus. This ef-
fect occurred even when, in the case of U1,

4
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Figure 2: Preferred stimuli were dependent on attentional state. Color-coded images rep-
resent the preferred stimulus for each unit in the bottleneck layer (columns) for three at-
tentional states (rows) as indicated by the dashed circles. Higher contrast was observed on
attended regions.

the activity ranges were very similar for the
two conditions.

The model reproduced measure-
ments from visual cortex

We related these findings to experimentally
observed modulation of neural activity dur-
ing selective attention tasks. First, we repli-
cated the analysis presented in Treue and
Maunsell (1999), in which combinations of
preferred and anti-preferred stimuli were pre-
sented inside the receptive field (RF) of a
cell and activity was measured as attention
changed between these two regions. Fig. 4A
shows the response from a neuron in the me-
dial superior temporal (MST) area. The pre-
ferred stimulus for this neuron was a pat-
tern of dots moving in one direction, indi-
cated by the upward-pointing arrow. The at-
tended stimulus is indicated by the dashed
ellipse. The histograms in gray show the fir-
ing rate of the cell as a function of time, and
mean responses are indicated by solid hori-
zontal lines for each condition. Overlaid, we
show the response of one neuron from our
model (dotted lines) under similar conditions.
The stimuli consisted of combinations of the
left and right halves from the preferred and
anti-preferred stimuli, calculated with atten-
tion directed to the center of the input space.
The maximal firing rate for the model neuron
was set to 50 spikes/sec to obtain compara-
ble magnitudes. The modulation of activity of

the model neuron matched that of the visual
neuron. In particular, when attention was
shifted from preferred to non-preferred fea-
tures of the same stimulus, activity decreased
dramatically.
The scatter plot in Fig. 4B shows the fir-

ing rates for neurons in areas MT and MST
when attention was directed toward the pre-
ferred stimulus (y axis) versus the firing rates
obtained while attending the anti-preferred
stimulus (x axis). Points above the diago-
nal indicate higher activity when attending
the preferred stimulus. Values for all model
units, indicated by stars, fall above the diag-
onal and within the range of experimentally
observed values. For this plot, the range of
the s(·) function was scaled and shifted to 0–
100 spikes/sec.
Further exploration of these effects is

shown in Fig. 5. Responses to the four
combinations of preferred and anti-preferred
half-stimuli are presented, first for a single
unit, and then for all units in the bottleneck
layer. Fig. 5A shows the stimuli and corre-
sponding attention maps for unit U2. The
stimuli consisted of combinations of the left
and right halves from the preferred and anti-
preferred stimuli. Attention maps showed a
clear change in the activity of the unit as at-
tention was shifted from right to left. The sim-
ulation also showed that changes in features
far from the attended region have a smaller
effect on activity than changes presented at
the attended location (compare dark bars of
Fig. 5B). As shown in Fig. 4, when attention
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Figure 3: Activity was modulated by the attentional signal. Color-coded images represent the
activity of each bottleneck unit for a fixed stimulus as the center of attention is directed to
different regions of the input space. Two different stimuli (top and bottom rows) are used for
comparison. Maps are scaled according to the range of activities observed for that particular
stimulus. The bars between the two rows display the range of activity for each of the two
conditions with respect to the absolute limits of the activity of the units.
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Figure 4: Activity modulation matched experimental measurements from area MST. (A) Neu-
ronal response to two stimuli inside the receptive field of the cell, one preferred (arrow up)
and one anti-preferred (arrow down). Attentional focus is indicated by a dashed ellipse. The
histograms in gray show the firing rate of the cell as a function of time. Mean responses are
indicated by solid horizontal lines (MST cell) and dotted lines (model unit) for each condition.
(B) Scatter plot showing the response to anti-preferred stimuli vs. the response to preferred
stimuli for each unit. Points above the diagonal indicate higher activity when attending to the
preferred stimulus. (Reproduced from Treue and Maunsell, 1999)
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Figure 5: All model units showed similar ac-
tivity modulation. (A) Combination of pre-
ferred (+) and anti-preferred (–) stimuli for
unit U2 (top) and attentional modulation
of activity in U2 for these inputs (bottom).
(B) Comparison of activity in U2 for two at-
tentional states as indicated by the dashed
ellipses. (C) Changes in activity for each unit
in the bottleneck as attention is shifted from
right to left. Bars show means across units.

was shifted from preferred to non-preferred
features of the same stimulus, activity de-
creased dramatically. In contrast, the effect of
attention when both halves were preferred or
anti-preferred was very small. These observa-
tions were consistent for all units (Fig. 5C).
The model was also compared to experi-

ments in which the response of cells in area
V4 were measured for four attentional con-
ditions, while a bar of fixed orientation was
displaced inside the receptive field of the cell
(Connor et al., 1996, 1997). Fig. 6A shows the

response of one V4 cell. These plots contain
various features that are common in atten-
tional modulation:
(1) The response of the cell for a fixed stimu-
lus depends on the attended location.

(2) The stimulus that elicits the strongest re-
sponse depends on attention.

(3) The cell’s response when attention is fixed
depends on the stimulus position.

(4) This dependence on stimulus position dif-
fers between attentional states—for in-
stance, the left and right panels in Fig. 6A
display different trends as the stimulus
position is changed.

Fig. 6B shows the results from a model neu-
ron under similar conditions. In this case, the
input image is composed of a non-preferred
stimulus with a small region belonging to the
preferred stimulus at different positions, in-
dicated by the numbers 1–5. Attention is di-
rected to the borders of the image, as indi-
cated by the circles. The model exhibited all
features observed in the experimental data.
Two shift indexes were also calculated for

each neuron, after Connor et al. (1997). The
fractional shift measures the proportion of to-
tal response that shifted from one side of the
RF to the other when attention is shifted. This
index is bounded between −1 and 1, which
a positive value indicating shifts in the di-
rection of attention. Connor et al. (1997) re-
ports mean values of 0.16 or 0.26 depending
on whether 5 or 7 bar positions were in use.
All our model neurons had a positive frac-
tional shift, with a mean value of 0.22. The
second index, the peak shift, measures the
distance between positions generating maxi-
mum responses. Mean experimental reported
values were 10% or 25% of the RF size, de-
pending on whether 5 or 7 bar positions were
in use. Our model neurons had non-negative
peak shifts with a mean value of 25% of the
total position variation.

Magnitude of attentional modula-
tion depended on capacity

The mean modulation of activity of bottleneck
units in the model as attention was shifted
from left to right is shown in Fig. 7, with panel
A showing how this varies with the num-
ber of bottleneck units, and panel C showing

7
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Figure 6: Activity modulation matched experimental measurements from area V4. (A) Re-
sponse of one V4 neuron to a bar stimulus placed at five different positions inside the recep-
tive field, as indicated by a dashed circle. Attention was directed to one of the four circles
outside the receptive field. (Reproduced from Connor et al., 1996). (B) Response of one model
neuron as a region of a non-preferred stimulus is replaced by the preferred stimulus in five
different locations. Attention is directed to the border of the input space as indicated by the
circles.

how this varies with amount of injected noise.
Gray open circles correspond to the absolute
value of the modulation averaged over 1000
random test patterns, for each unit in the
bottleneck. The solid circles show the mean
across units, with error bars indicating the
standard error. Panels B and D show the cor-
responding reconstruction error for each set
of parameters, plotting the mean errors for
the attended versus unattended halves of the
sensory input. Note that noise was added to
the bottleneck units only during optimization,
and for this reason changes in the modula-
tion magnitude cannot be attributed to noise
in the measurements.
The magnitude of the modulation decreased

as the number of bottleneck units increased.
As expected, errors in the ignored region were
higher than those in the attended region,
but decreased as the number of bottleneck
units was increased, gradually closing the
gap. As the noise level in the bottleneck units
was increased, the magnitude of the modula-
tion and of the reconstruction error both in-
creased. The error for the attended region
increased faster than for the unattended re-
gion. These two plots display an abrupt tran-

sition as the noise level becomes very high:
the trend of the activity modulation, as well
as the error values, changes, with the error
values for the attended and unattended re-
gions becoming equal.

4 Discussion

The above results show that, when a neu-
ral system is optimized to encode its inputs
with changing fidelity requirements, the code
developed exhibits modulatory phenomena of
the sort that has been observed in the visual
systems of animals engaged in selective at-
tention tasks. These modulatory phenomena,
which constitute a reallocation of resources,
emerge even when the encoder is a very sim-
ple homogeneous feedforward neural model.

Limitations of the Simulation

The simulations incorporated a number of
simplifications, most of which were made
for ease of exposition or computational effi-
ciency.
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Figure 7: Magnitude of attentional modulation depends on system capacity. (A) Modulation of
activity in response to random stimuli as attention was shifted from left to right, for networks
with different numbers of units in the bottleneck. Open gray circles represent the mean
modulation for each unit, while solid circles show the mean over all units with bars indicating
the standard error. (B) Mean reconstruction error for the attended and unattended sides.
(C,D) Same as (A,B) but using 10 bottleneck units and instead varying the amount of noise
injected into the bottleneck units during training.
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(i) During optimization, the penalty func-
tion was set to a single attentional spot-
light. This is not a requirement of the general
model, and other functions could be used to
define the performance demands. For exam-
ple, non-spatial goals could be incorporated
by requiring higher fidelity reconstruction of
some particular feature regardless of its spa-
tial location.
(ii) To allow convenient visual display, sim-

ulated stimuli were visual patterns. Effi-
cient representation of stimuli and atten-
tional modulation phenomena are present in
many (if not all) modalities, and the model ex-
plored here could be applied equally well to
non-visual and non-spatial modalities.
(iii) The simulation allowed synapses from

a single neuron to be both excitatory and in-
hibitory. This is not a common feature in bi-
ological neural systems, where a combination
of excitatory and inhibitory neurons could
achieve the same functionality.
(iv) The simulation is limited to explo-

rations inside the receptive field of a cell. Fur-
thermore, as a consequence of the simula-
tion’s simplicity, it cannot make detailed pre-
dictions about the form of the RFs. Extended
and more complicated models would be nec-
essary to predict attentional modulation of re-
alistic RFs. For instance, incorporating spar-
sity constraints into the optimization proce-
dure should give rise to more realistic local-
ized RFs (Olshausen and Field, 1996), which
would allow the prediction of attentional mod-
ulation of RF shape and location.
(v) The capacity in the bottleneck was re-

stricted by limiting the number of neurons,
with each neuron’s capacity limited by an in-
trinsic noise term. Given that primary sen-
sory cortex typically has greater than 103×
more neurons than the sensory sheet it rep-
resents, e.g., in humans, 106 retinal ganglion
cells versus over 109 V1 pyramidal neurons,
one is led to question the biological relevance
of this capacity restriction. It is important
to note that this is not an issue with the
model of attention per se, but rather with
the optimal coding framework it builds upon.
One potential resolution of this issue is that
energetic constraints may drive the nervous
system to use efficient codes even in areas
where there is an abundance of neurons, and

even where their principal role is computation
rather than coding.
(vi) The data displayed was collected after

the optimization procedure had been run and
the connection strengths fixed at their opti-
mal values. In nature, we might expect this
type of adaptation to be continuous, rather
than being confined to a period of training.
(vii) To allow standard effective learning al-

gorithms to be applied, the simulation was at
the level of firing rates rather than spikes, and
short-term plasticity was not included.
(viii) The goal of the network in the simu-

lations was to find an efficient representation
for the stimulus. Biological networks likely
transform stimuli not to merely compressed
representations, but to representations that
serve to inform future actions.
The limitations presented above are mostly

specific to the current simulation rather than
to the general model proposed in this paper,
or to the predictions it makes. Stimulus-
driven attentional phenomena, and the unde-
fined origin of the attentional signal, are some
of the limitations that elaborations of the
model might address. Despite these simpli-
fications, the simulation exhibited many phe-
nomena observed experimentally, and makes
novel concrete testable predictions about the
modulation of neural activity by attentional
processes. The fact that the model, even with
these simplifications, accounts for a broad
range of previous measurements and makes
novel robust predictions is, to our mind, a
strength rather than a weakness.

Consistency with electrophysiolog-
ical data

The predictions of this model are consistent
with observations from electrophysiological
recordings in which the output of neurons
in the visual system are modulated by the
attentional state of the subject. This mod-
ulation suggests that the characterization of
neural response should go beyond the tra-
ditional stimulus-response dependency, usu-
ally represented as a receptive field or tuning
curve.
Treue and Maunsell (1999) showed that

when combining preferred and non-preferred
moving stimuli inside the receptive field of a
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cell in monkey area MST, the activity of the
cell was higher when attention was directed
to the region containing the preferred direc-
tion of motion. These results are exhibited by
the model (Fig. 4 and 5).
Results from the model are also consistent

with those of Connor et al. (1997). Experi-
mental measurements of the modulation of
neuronal response for different sets of stim-
uli and attentional conditions qualitatively
matched those from model neurons. Further-
more, when setting the maximum firing rate
parameter to biologically plausible values, the
model produced modulations that lie in the
ranges observed experimentally. We would
make one observation regarding the shift in-
dices of Connor et al. (1997): it may be mis-
leading to interpret the partial shift values
merely as a tendency to have increased ac-
tivity when a bar is presented at the attended
edge of the RF, as compared to the activity
when a bar is presented at the opposite edge
of the RF—a property exhibited by the model
of Rao (2005). For instance, even when all
units show positive indices, some may show
higher activity for a bar in position 1 com-
pared to position 5 in both (left and right)
attentional conditions. What the index mea-
sures is the proportion of activity that shifts
when attention changes.
Implicit in the measurements of Treue and

Maunsell (1999) and Connor et al. (1997) is
the fact that the attentional modulation is de-
pendent on the stimulus, e.g., attention mov-
ing from left to right inside the RF of a cell will
have an increasing or decreasing effect on the
neuron’s firing rate depending on the relative
location of preferred and non-preferred fea-
tures. Examples of this dependency in our
simulation are shown in Fig. 3. This phe-
nomenon implies that attentional modulation
cannot be fully characterized using a single
stimulus.
Treue and Maunsell (1999) also observed

that directing attention towards the recep-
tive field of a cell can both enhance and re-
duce responses, e.g., when the animal was
attending to the anti-preferred of two direc-
tions in the receptive field, the response was
below the one evoked by the same stimu-
lation when attention was directed outside
the receptive field. While this phenomenon

could not be tested directly using our simu-
lation, our results suggest a clear reduction
in activity when attention is directed to the
anti-preferred region compared to other re-
gions (Fig. 5). This is not obvious from mod-
els in which attention simply amplifies activ-
ity for attended locations. Furthermore, the
model predicts that stimulus changes in the
attended location generally produce a higher
change in activity than stimulus changes in
unattended locations (Fig. 5B).
Results from our model are consistent with

other experimental results not analyzed in
detail in this paper. For instance, the re-
sponse of cells in areas V2 and V4 is atten-
uated when placing a non-preferred feature
inside the receptive field when compared to
a preferred feature alone. If attention is di-
rected to the preferred feature, activity is re-
stored (Reynolds et al., 1999). Our model ex-
hibits the same phenomenon, as suggested
by Fig. 5. Another example relates to the type
of modulation attentional signals produce on
neural activity. Preliminary results suggest
that this model can display apparent mul-
tiplicative effects without explicit multiplica-
tive interactions. A more complex model that
exhibits localized RFs, as discussed above,
would be necessary to obtain conditions com-
parable to those from the electrophysiolog-
ical recordings discussed in (McAdams and
Maunsell, 1999).

Comparison to other modelling ap-
proaches

Selective attention researchers have sug-
gested a wide variety of models with different
predictive power, most of them presenting ac-
counts of behavioral phenomena rather than
explicit predictions on the modulation of neu-
ral activity (Mozer and Sitton, 1998; Deco and
Zihl, 2001; Heinke and Humphreys, 2003).
An influential early modelling study that

made concrete predictions regarding atten-
tional changes of neural activity was devel-
oped in Olshausen et al. (1993). In that
study, control neurons dynamically modified
the synaptic strengths of the connections in
a model network of the ventral visual path-
way. The network selectively routed informa-
tion into higher cortical areas producing in-

11



Optimal Coding Predicts Attentional Modulation Jaramillo & Pearlmutter

variant representation of visual objects. This
model predicted changes in position and size
of receptive fields as attention was shifted or
rescaled. These phenomena are partially sup-
ported by results from Connor et al. (1997).
Their model also qualitatively matches mod-
ulation effects observed by Moran and Desi-
mone (1985) with stimuli inside and outside
the classical receptive field of V4 neurons.
In comparison to our model, in which at-
tentional modulation emerges from the non-
linearity of the units and general objective
of the network, their model obtained mod-
ulatory effects by explicitly modulating the
synaptic strengths of the connections. Their
model also used a spatially localized connec-
tivity pattern which gave rise to localized RFs,
thus allowing for comparison of attention di-
rected inside versus outside the RF.
More recent studies incorporate principles

of statistical inference into models of atten-
tion. For instance, Yu and Dayan (2005)
and Rao (2005) present networks that im-
plement Bayesian integration of sensory in-
puts and priors, and which replicate behav-
ioral as well as electrophysiological measure-
ments. In these studies, spatial attention is
equated to prior information on the location of
the features of interest. The Bayesian infer-
ence approach to modeling attention should
be regarded as complementary to that taken
here. The transformations performed by the
model units in the present work are defined
by the solution to an optimal coding problem;
and under certain conditions, these com-
putations would be equivalent to those in
inference-based networks. In fact coding, sta-
tistical modeling of distributions, and infer-
ence from partial data are, mathematically
speaking, very closely related.

Mechanisms that subserve atten-
tional modulation

Local gain modulation, a common tool in
mechanistic models of attentional modula-
tion, is not necessarily in opposition with our
approach. What we suggest is that events tra-
ditionally described as local gain modulation
subserve a global reallocation of resources,
which is the strategy the nervous system has
evolved for approaching optimal performance

given its constraints.
The mechanisms of attentional modulation

have been traditionally posited to be changes
in synaptic efficacy or modulation of pre-
synaptic terminals (Olshausen et al., 1993).
Here we show that the overall effects of this
modulation can appear in a network of satu-
rating units without any changes in synaptic
strength, being controlled only by the activ-
ity itself. This is consistent with the notion
that a network optimized for efficient coding
under shifting fidelity requirements will inte-
grate whatever information is available about
the current requirements by pressing into
service any available mechanism.
In other words, it is possible that there is no

way to anatomically distinguish between neu-
ronal mechanisms that support coding per-se
from mechanisms that support shifts in cod-
ing. While it could be argued that evidence of
multiple sites of integration in cortical neu-
rons (Larkum et al., 1999) is inconsistent
with this idea, the results above show that at-
tentional modulation of the neural code is not
sufficient to explain the functional role of in-
puts at different cortical layers, instead sug-
gesting that these mechanisms may be more
important for learning or other processes.

Main Predictions

The fact that our simulation shows mod-
ulation effects consistent with physiological
recordings suggests that we should not nec-
essarily expect explicit gating circuitry in
neural systems responsible for attentional
phenomena. Furthermore, the informing sig-
nals do not have to explicitly represent the
“attentional space”, i.e., a spatial attention
effect is not necessarily mediated by a topo-
graphic input.
Our model strongly predicts that a neu-

ron’s “preferred stimulus” will depend on at-
tentional state. Moreover, the behavior of a
single neuron in this model cannot be well
characterized by measurements of attentional
modulation of only a single sensory stimulus.
This prediction is consistent with experimen-
tal results discussed above, but it should be
possible to test it more explicitly using cur-
rently available experimental techniques.
The model also suggests that stronger mod-
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ulations are expected when the complexity of
the input grows, relative to the capacity of the
system.

5 Conclusion

The model presented here accounts for at-
tentional modulation of neural response in a
framework that includes both attention and
receptive field formation, and as a conse-
quence of an underlying normative princi-
ple (optimal coding) rather than by tuning a
complex special-purpose architecture. The
model shows that reallocation of resources
can emerge even in a simple feedforward net-
work, and challenges the traditional charac-
terization of neural activity. These results
are consistent with the notion that atten-
tional modulation is not, at its root, due to
specific local architectural features, but is
rather a ubiquitous phenomenon to be ex-
pected in any system with shifting fidelity re-
quirements.
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