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Abstract

Just storing the Hessian
�

(the matrix of second derivatives ∂2E � ∂wi∂wj of the error E with
respect to each pair of weights) of a large neural network is difficult. Since a common use of
a large matrix like

�
is to compute its product with various vectors, we derive a technique

that directly calculates
���

, where
�

is an arbitrary vector. To calculate
���

, we first define a
differential operator ����� f ( 	 ) 
 = (∂ � ∂r) f ( 	 + r

�
) � r=0, note that ���������
 =

���
and ������	�
 =�

, and then apply �������
 to the equations used to compute ��� . The result is an exact and
numerically stable procedure for computing

���
, which takes about as much computation, and

is about as local, as a gradient evaluation. We then apply the technique to a one pass gradient
calculation algorithm (backpropagation), a relaxation gradient calculation algorithm (recurrent
backpropagation), and two stochastic gradient calculation algorithms (Boltzmann Machines and
weight perturbation). Finally, we show that this technique can be used at the heart of many
iterative techniques for computing various properties of

�
, obviating any need to calculate the

full Hessian.

1 Introduction

Efficiently extracting second-order information from large neural networks is an important problem,
because properties of the Hessian appear frequently. For instance, in the analysis of the convergence
of learning algorithms (Widrow et al., 1979; le Cun et al., 1991; Pearlmutter, 1992); in some
techniques for predicting generalization rates in neural networks (MacKay, 1991; Moody, 1992);
in techniques for enhancing generalization by weight elimination (le Cun et al., 1990; Hassibi and
Stork, 1993); and in full second-order optimization methods (Watrous, 1987).

There exist algorithms for calculating the full Hessian
�

(the matrix of second derivative terms
∂2E � ∂wi∂wj of the error E with respect to the weights 	 ) of a backpropagation network (Bishop,
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1992; Werbos, 1992; Buntine and Weigend, 1991), or reasonable estimates thereof (MacKay,
1991)—but even storing the full Hessian is impractical for large networks. There is also an
algorithm for efficiently computing just the diagonal of the Hessian (Becker and le Cun, 1989;
le Cun et al., 1990). This is useful when the trace of the Hessian is needed, or when the diagonal
approximation is being made—but there is no reason to believe that the diagonal approximation is
good in general, and it is reasonable to suppose that, as the system grows, the diagonal elements of
the Hessian become less and less dominant. Further, the inverse of the diagonal approximation of
the Hessian is known to be a poor approximation to the diagonal of the inverse Hessian.

Here we derive an efficient technique for calculating the product of an arbitrary vector
�

with
the Hessian

�
. This allows information to be extracted from the Hessian without ever calculating

or storing the Hessian itself. A common use for an estimate of the Hessian is to take its product
with various vectors. This takes O(n2) time when there are n weights. The technique we derive
here finds this product in O(n) time and space,1 and does not make any approximations.

We first operate in a very general framework, to develop the basic technique. We then apply
it to a series of more and more complicated systems, starting with a typical non-iterative gradient
calculation algorithm, in particular a backpropagation network, and proceeding to a deterministic
relaxation system, and then to some stochastic systems, in particular a Boltzmann Machine and a
weight perturbation system.

2 The Relation Between the Gradient and the Hessian

The basic technique is to note that the Hessian matrix appears in the expansion of the gradient about
a point in weight space, � � ( 	 + ∆ 	 ) =

� � ( 	 ) +
�

∆ 	 + O( ���∆ 	���� 2)

where 	 is a point in weight space, ∆ 	 is a perturbation of 	 ,
� � is the gradient, the vector of

partial derivatives ∂E � ∂wi, and
�

is the Hessian, the matrix of second derivatives of E with respect
to each pair of elements of 	 . This equation has been used to analyze the convergence properties
of some variants of gradient descent (Widrow et al., 1979; le Cun et al., 1991; Pearlmutter, 1992),
and to approximate the effect of deleting a weight from the network (le Cun et al., 1990; Hassibi
and Stork, 1993). Here we instead use it by choosing ∆ 	 = r

�
, where

�
is a vector and r is a small

number. We wish to compute
���

. Now we note that�
(r
�

) = r
���

=
� � ( 	 + r

�
)  � � ( 	 ) + O(r2)

or, dividing by r, ���
=
� � ( 	 + r

�
)  � � ( 	 )

r
+ O(r). (1)

This equation provides a simple approximation algorithm for finding
���

for any system whose
gradient can be efficiently computed, in time about that required to compute the gradient (assuming

1Or O(pn) time when, as is typical for supervised neural networks, the full gradient is the sum of p gradients, each for
one single exemplar.
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that the gradient at 	 has already been computed.) Also, applying the technique requires minimal
programming effort. This approximation was used to good effect in (le Cun et al., 1993) and in
many numerical analysis optimization routines, which use it to gradually build up an approximation
to the inverse Hessian.

Unfortunately, this formula is succeptible to numeric and roundoff problems. The constant r
must be small enough that the O(r) term is insignificant. But as r becomes small, large numbers are
added to tiny ones in 	 + r

�
, causing a loss of precision of

�
. A similar loss of precision occurs in

the subtraction of the original gradient from the perturbed one, because two nearly identical vectors
are being subtracted to obtain the tiny difference between them.

3 The !#"�$&% Technique

Fortunately, there is a way to make an algorithm which exactly computes
���

, rather than just
approximating it, and simultaneously rid ourselves of these numeric difficulties. To do this, we first
take the limit of equation (1) as r ' 0. The left hand side stays

���
, while the right hand side

matches the definition of a derivative, and thus���
= lim

r ( 0

� � ( 	 + r
�

)  � � ( 	 )
r

=
∂
∂r
� � ( 	 + r

�
) )))) r=0

(2)

As we shall see, there is a simple transformation to convert an algorithm that computes the
gradient of the system into one that computes this new quantity. The key to this transformation is
to define the operator * ��+ f ( 	 ) ,.- ∂

∂r
f ( 	 + r

�
) )))) r=0

(3)

so
���

=

* ��+ � � ( 	 ) , . (To avoid clutter we will usually write

* +0/ , instead of

* �1+0/ , .) We can then
take all the equations of a procedure that calculates a gradient, e.g. the backpropagation procedure,
and we can apply the

* ��+0/ , operator to each equation. Because

* +0/ , is a differential operator, it
obeys the usual rules for differential operators, such as:* + cf ( 	 ) , = c

* + f ( 	 ) , (4)* + f ( 	 ) + g( 	 ) , =

* + f ( 	 ) , +

* + g( 	 ) ,* + f ( 	 )g( 	 ) , =

* + f ( 	 ) , g( 	 ) + f ( 	 )

* + g( 	 ) ,* + f (g( 	 )) , = f 2 (g( 	 ))

* + g( 	 ) ,*43
df ( 	 )

dt 5 =
d

* + f ( 	 ) ,
dt

Also note that * + 	�, =
�

. (5)

These rules are sufficient to derive, from the equations normally used to compute the gradient,
a new set of equations about a new set of

*
-variables. These new equations make use of variables

from the original gradient calculation on their right hand sides. This can be thought of as an adjoint
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system to the gradient calculation, just as the gradient calculation of backpropagation can be thought
of as an adjoint system to the forward calculation of the error measure. This new adjoint system
computes the vector

* + � � , , which is precisely the vector
���

which we desire.

4 Application of the !6"7$&% Technique to Various Networks

Let us utilize this new technique for transforming the equations that compute the gradient into
equations that compute

���
, the product of a vector

�
with the Hessian

�
. We will, rather

mechanically, derive appropriate algorithms for some standard sorts of neural networks that typify
three broad classes of gradient calculation algorithms. These examples are intended to be illustrative,
as the technique applies equally well to most other gradient calculation procedures.

Usually the error E is the sum of the errors for many patterns, E = 8 p Ep. Therefore
� � and

�
are sums over all the patterns,

�
= 8 p

�
p, and

���
= 8 p

�
p
�

. As is usual, for clarity this outer
sum over patterns is not shown except where necessary, and the gradient and

���
procedures are

shown for only a single exemplar.

4.1 Simple Backpropagation Networks

Let us apply the above procedure to a simple backpropagation network, to derive the

* + backprop ,
algorithm, a set of equations that can be used to efficiently calculate

���
for a backpropagation

network. The

* + backprop , algorithm was independently discovered by (Werbos, 1988, eq. 14),
who derived it as a backpropagation process to calculate

���
=
� � (

� / � � E), where
� � E is also

calculated by backpropagation. Interestingly, that derivation is dual to the one given here, in that
the direction of the equations is reversed, the backwards pass of the

� � E algorithm becoming a
forward pass in the

���
algorithm, while here the direction of the equations is unchanged. The same

algorithm was also discovered, with yet another derivation, by (Møller, 1993a).

For convenience, we will now change our notation for indexing the weights 	 . Let 	 be the
weights, now doubly indexed by their source and destination units’ indices, as in wij , the weight from
unit i to unit j. Because

�
is of the same dimension as 	 , its elements will be similarly indexed. All

sums over indices are limited to weights that exist in the network topology. As is usual, quantities
which occur on the left sides of the equations are treated computationally as variables, and calculated
in topological order, which is assumed to exist because the weights, regarded as a connection matrix,
is zero-diagonal and can be put into triangular form (Werbos, 1974).

The forward computation of the network is2

xi = 9
j

wjiyj (6)

2This compact form of the backpropagation equations, due to Fernando Pineda, unifies the special cases of input
units, hidden units, and output units. In the case of a unit i with no incoming weights, i.e. an input unit, it simplifies
to yi = σi(0) + Ii, allowing the value to be set entirely externally. For a hidden unit or output i, the term Ii = 0. In the
corresponding equations for the backward pass (7) only the output units have nonzero direct error terms e i, and since such
output units have no outgoing weights, the situation for an output unit i simplifies to ∂E : ∂yi = ei(yi).
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yi = σi(xi) + Ii

where σi( / ) is the nonlinearity of the ith unit, xi is the total input to the ith unit, yi is the output of
the ith unit, and Ii is the external input (from outside the network) to the ith unit.

Let the error measure be E = E(y), and its simple direct derivative with respect to yi be
ei = dE � dyi. We assume that ei depends only on yi, and not on any yj for j ≠ i. This is true of most
common error measures, such as squared error or cross entropy (Hinton, 1987).3 We can thus write
ei(yi) as a simple function. The backward pass is then

∂E
∂yi

= ei(yi) + 9
j

wij
∂E
∂xj

(7)

∂E
∂xi

= σ 2i (xi)
∂E
∂yi

∂E
∂wij

= yi
∂E
∂xj

Applying

* +0/ , to the above equations gives* + xi , = 9
j ; wji

* + yj , + vjiyj < (8)* + yi , =

* + xi , σ 2i (xi)

for the forward pass, and, for the backward pass,*.3
∂E
∂yi 5 = e 2i(yi)

* + yi , + 9
j = wij

*.>
∂E
∂xj ? + vij

∂E
∂xj @ (9)*.3

∂E
∂xi 5 = σ 2i (xi)

*43
∂E
∂yi 5 +

* + xi , σ 2A2i (xi)
∂E
∂yi* >

∂E
∂wij ? = yi

* >
∂E
∂xj ? +

* + yi , ∂E
∂xj

The vector whose elements are

* + ∂E � ∂wij , is just

* + � � , =
���

, the quantity we wish to compute.

For sum squared error ei(yi) = yi  di where di is the desired output for unit i, so e 2i(yi) = 1. This
simplifies (9) for simple output units to

* + ∂E � ∂yi , =

* + yi , . Note that, in the above equations, the
topology of the neural network sometimes results in some

*
-variables being guaranteed to be zero

when
�

is sparse—in particular when
�

= (0 ⋅ ⋅ ⋅ 0 1 0 ⋅ ⋅ ⋅ 0), which can be used to compute a single
desired column of the Hessian. In this situation, some of the computation is also shared between
various columns.

3If this assumption is violated then in equation (9) the e Bi (yi) CED yi F term generalizes to 8 j(∂ei : ∂yj) CGD yj F .
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4.2 Recurrent Backpropagation Networks

The recurrent backpropagation algorithm (Almeida, 1987; Pineda, 1987) consists of a set of forward
equations which relax to a solution for the gradient,

xi = 9
j

wjiyj (10)

dyi

dt H  yi + σi(xi) + Ii

dzi

dt H  zi + σ 2i (xi) 9
j ; wijzj < + ei(yi)

∂E
∂wij

= yizj � t= I
Adjoint equations for the calculation of

���
are obtained by applying the

* +J/ , operator, yielding* + xi , = 9
j ; wji

* + yi , + vjiyj < (11)

d

* + yi ,
dt H  * + yi , + σ 2i (xi)

* + xi ,
d

* + zi ,
dt H  * + zi , + σ 2i (xi) 9

j ; vijzj + wij

* + zj , < + σ 2A2i (xi)

* + xi , 9
j ; wijzj < + e 2i(yi)

* + yi ,* >
∂E

∂wij ? = yi

* + zj , +

* + yi , zj � t= I
These equations specify a relaxation process for computing

���
. Just as the relaxation equations

for computing
� � are linear even though those for computing y and E are not, these new relaxation

equations are linear.

4.3 Stochastic Boltzmann Machines

One might ask whether this technique can be used to derive a Hessian multiplication algorithm
for a classic Boltzmann Machine (Ackley et al., 1985), which is discrete and stochastic, unlike its
continuous and deterministic cousin to which application of

* +�/ , is simple. A classic Boltzmann
Machine operates stochastically, with its binary unit states si taking on random values according to
the probability

P(si = 1) = pi = σ(xi � T) (12)
xi = 9

j

wjisj

At equilibrium, the probability of a state α of all the units (not just the visible units) is related to its
energy

Eα = 9
i<j

sα
i sα

j wij (13)
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by P(α) = Z K 1 exp  Eα � T, where the partition function is Z = 8 α exp  Eα � T. The system’s
equilibrium statistics are sampled because, at equilibrium,

∂G
∂wij

= L p+
ij  p Kij M � T (14)

where pij = N sisj O , G is the asymmetric divergence, an information theoretic measure of the difference
between the environmental distribution over the output units and that of the network, as used in
(Ackley et al., 1985), T is the temperature, and the + and  superscripts indicate the environmental
distribution, + for waking and  for hallucinating.

Applying the

* +J/ , operator, we obtain* >
∂G
∂wij ? = L *QP p+

ij R  *SP p Kij R M � T. (15)

We shall soon find it useful if we define

Dα =

* + Eα , = 9
i<j

sα
i sα

j vij (16)

qij = N sisjD O (17)

(with the letter D chosen because it has the same relation to
�

that E has to 	 ) and to note thatN D O = 9
i<j

pijvij. (18)

With some calculus, we find

* + exp  Eα � T , =  P(α) Z Dα � T, and thus

* + Z , =  Z N D O � T.
Using these and the relation between the probability of a state and its energy, we have* + P(α) , = P(α) ; N D O  Dα < � T (19)

where the expression P(α) can not be treated as a constant because it is defined over all the units,
not just the visible ones, and therefore depends on the weights. This can be used to calculate* + pij , = 9

α

* + P(α) , sα
i sα

j

= 9
α

P(α) ; N D O  Dα < sα
i sα

j � T
= ; N sisj O N D O  TN sisjD O < � T
= ; pij N D O  qij < � T. (20)

This beautiful formula4 gives an efficient way to compute
���

for a Boltzmann Machine, or at least
as efficient a way as is used to compute the gradient, simply by using sampling to estimate qij. This
requires the additional calculation and broadcast of the single global quantity D, but is otherwise
local.

The collection of statistics for the gradient is sometimes accelerated by using the equation

pij = N si O N sj � si = 1 O = N pi O N pj � si = 1 O . (21)

4Equation (20) is similar in form to that of the gradient of the entropy (Geoff Hinton, personal communication.)
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The analogous identity for accelerating the computation of qij is

qij = N pi O N sjD � si = 1 O (22)

or
qij = N pi O N pj(D + (1  sj)∆Dj) � si = 1 O (23)

where ∆Di = 8 j sjvji is defined by analogy with ∆Ei = E � si=1  E � si=0 = 8 j sjwji.

The derivation here was for the simplest sort of Boltzmann Machine, with binary units and only
pairwise connections between the units. However, the technique is immediately applicable to higher
order Boltzmann Machines (Hinton, 1987), as well as to Boltzmann Machines with non-binary units
(Movellan and McClelland, 1991).

4.4 Weight Perturbation

In weight perturbation (Jabri and Flower, 1991; Alspector et al., 1993; Flower and Jabri, 1993; Kirk
et al., 1993; Cauwenberghs, 1993) the gradient

� � is approximated using only the globally broadcast
result of the computation of E( 	 ). This is done by adding a random zero-mean perturbation vector
∆ 	 to 	 repeatedly and approxmating the resulting change in error by

E( 	 + ∆ 	 ) = E( 	 ) + ∆E = E( 	 ) +
� �U/ ∆ 	 .

From the viewpoint of each individual weight wi

∆E = ∆wi
∂E
∂wi

+ noise. (24)

Because of the central limit theorem it is reasonable to make a least-squares estimate of ∂E � ∂wi,
which is ∂E � ∂wi = N ∆wi∆E O ��V ∆w2

i W . The numerator is estimated from corresponding samples of
∆wi and ∆E, and the denominator from prior knowledge of the distribution of ∆wi. This requires
only the global broadcast of ∆E, while each ∆wi can be generated and used locally.

It is hard to see a way to mechanically apply

* +�/ , to this procedure, but we can nonetheless
derive a suitable procedure for estimating

���
. We note that a better approximation for the change

in error would be
E( 	 + ∆ 	 ) = E( 	 ) +

� �U/ ∆ 	 + 1
2∆ 	 T X� ∆ 	 (25)

where X� is an estimate of the Hessian
�

. We wish to include in X� only those properties of
�

which
are relevent. Let us define Y =

���
. If X� is to be small in the least squares sense, but also X��� = Y ,

then the best choice would then be X� = Y � T �Z�[� � �[� 2, except that then X� would not be symmetric, and
therefore the error surface would not be well defined. Adding the symmetry requirement, which is
amounts to the added constraint

� T X� = Y T , the least squares X� becomesX� =
1��� � ��� 2 \ Y � T +

� Y T  � / Y�[� � �[� 2 �E� T ] . (26)

Substituting this in and rearranging the terms, we find that, from the perspective of each weight,

∆E = ∆wi
∂E
∂wi

+
∆ 	 / ��[� � �[� 2 \ ∆wi  ∆ 	 / �

2 �[� � �[� 2 vi
] zi + noise. (27)
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This allows both ∂E � ∂wi and zi to be estimated in the same least-squares fashion as above, using
only locally available values, vi and ∆wi, and the globally broadcast ∆E, plus a new quantity which
must be computed and globally broadcast, ∆ 	 / � . The same technique applies equally well to
other perturbative procedures, such as unit perturbation (Flower and Jabri, 1993), and a similar
derivation can be used to find the diagonal elements of

�
, without the need for any additional

globally broadcast values.

5 Practical Applications

The

* +0/ , technique makes it possible to calculate
���

efficiently. This can be used in the center
of many different iterative algorithms, in order to extract particular properties of

�
. In essence, it

allows
�

to be treated as a generalized sparse matrix.

5.1 Finding Eigenvalues and Eigenvectors

Standard variants of the power method allow one to^ Find the largest few eigenvalues of
�

, and their eigenvectors.^ Find the smallest few eigenvalues of
�

, and their eigenvectors.^ Sample
�

’s eigenvalue spectrum, along with the corresponding eigenvectors.

The clever algorithm of (Skilling, 1989) estimates the eigenvalue spectrum of a generalized
sparse matrix. It starts by choosing a random vector

�
0, calculating

�
i =

� i �
0 for i = 1, . . . , m,

using the dot products
�

i / � j as estimates of the moments of the eigenvalue spectrum, and using
these moments to recover the shape of the eigenvalue spectrum. This algorithm is made applicable
to the Hessian by the

* +0/ , technique, in both deterministic and, with minor modifications, stochastic
gradient settings.

5.2 Multiplication by the Inverse Hessian

It is frequently necessary to find _ =
� K 1 ` , which is the key calculation of all Newton’s-method

second-order numerical optimization techniques, and is also used in the Optimal Brain Surgeon
technique, and in some techniques for predicting the generalization rate. The

* +�/ , technique does
not directly solve this problem, but instead one can solve

� _ = ` for _ by minimizing �[� � _a ` �[� 2
using the conjugate-gradient method, thus exactly computing _ =

� K 1 ` in n iterations without
calculating or storing

� K 1. This squares the condition number, but if
�

is known to be positive
definite, one can instead minimize _ T � _b� 2 + _ / ` , which does not square the condition number
(Press et al., 1988, page 78). This application of fast exact multiplication by the Hessian, in
particular

* + backprop , , was independently noted in (Werbos, 1988).
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5.3 Step Size and Line Search

Many optimization techniques repeatedly choose a direction
�

, and then proceed along that direction
some distance µ, which takes the system to the constrained minimum of E( 	 + µ

�
). Finding the

value for µ which minimizes E is called a line search, because it searches only along the line 	 +µ
�

.
There are many techniques for performing a line search. Some are approximate while others attempt
to find an exact constrained minimum, and some use only the value of the error, while others also
make use of the gradient.

In particular, the line search used within the Scaled Conjugate Gradient (SCG) optimization
procedure, in both its deterministic (Møller, 1993b) and stochastic (Møller, 1993c) incarnations,
makes use of both first- and second-order information at 	 to determine how far to move. The
first order information used is simply

� � ( 	 ), while the second-order information is precisely���
, calculated with the one-sided finite difference approximation of equation (1). It can thus

benefit immediately from the exact calculation of
���

. In fact, the

* + backprop , procedure was
independently discovered for that application (Møller, 1993a).

The SCG line search proceeds as follows. Assuming that the error E is well approximated by a
quadratic, then the product

���
and the gradient

� � ( 	 ) predicts of the gradient at any point along
the line 	 + µ

�
by � � ( 	 + µ

�
) =

� � ( 	 ) + µ
���

+ O(µ2). (28)

Disregarding the O(µ2) term, if we wish to choose µ to minimize the error, we take the dot product
of
� � ( 	 + µ

�
) with

�
and set it equal to zero, as the gradient at the constrained minimum must be

orthogonal to the space under consideration. This gives
� / � � ( 	 ) + µ

� T ��� = 0 or

µ =  � / � � ( 	 )� T ��� . (29)

Equation (28) then gives a prediction of the gradient at 	 + µ
�

. To access the accuracy of the
quadratic approximation we might wish to compare this with a gradient measurement taken at that
point, or we might even preemptively take a step in that direction.

5.4 Eigenvalue Based Learning Rate Optimization for Stochastic Gradient Descent

The technique descibed in the previous section is, at least as stated, suitable only for determinis-
tic gradient descent. In many systems, particularly large ones, deterministic gradient descent is
impractical; only noisy estimates of the gradient are available. In joint work with colleagues at
AT&T Bell Labs (le Cun et al., 1993), the approximation technique of equation (1) enabled

�
to

be treated as a generalized sparse matrix, and properties of
�

were extracted in order to accelerate
the convergence of stochastic gradient descent.

Information accumulated online, in particular eigenvalues and eigenvectors of the principle
eigenspace, was used to linearly transform the weight space in such a way that the ill-conditioned
off-axis long narrow valleys in weight space, which slow down gradient descent, become well-
conditioned circular bowls. This work did not use an exact value for

���
, but rather a stochastic

unbiased estimate of the Hessian based on just a single exemplar at a time. Computations of the
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form _ (t) =
�

(t)
�

were replaced with relaxations of the form _ (t) = (1  α) _ (t  1) + α X� (t)
�

, where
0 < α c 1 determines the trade-off between steady-state noise and speed of convergence.

6 Summary and Conclusion

Second-order information about the error is of great practical and theoretical importance. It allows
sophisticated optimization techniques to be applied, appears in many theories of generalization, and
is used in sophisticated weight pruning procedures. Unfortunately, the Hessian matrix

�
, whose

elements are the second derivative terms ∂2E � ∂wi∂wj, is unwieldy. We have derived the

* +0/ ,
technique, which directly computes

���
, the product of the Hessian with a vector. The technique is^ exact: no approximations are made.^ numerically accurate: there is no drastic loss of precision.^ efficient: it takes about the same amount of computation as a gradient calculation.^ flexible: it applies to all existing gradient calculation procedures.^ robust: if the gradient calculation gives an unbiased estimate of

� � , then our procedure gives
an analogous unbiased estimate of

���
.

Procedures that result from the applications of the

* +0/ , technique are about as local, parallel,
and efficient as the original untransformed gradient calculation. The technique applies naturally
to backpropagation networks, recurrent networks, relaxation networks, Boltzmann Machines, and
perturbative methods. Hopefully, this new class of algorithms for efficiently multiplying vectors by
the Hessian will facilitate the construction of algorithms that are efficient in both space and time.
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