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We applied second-order blind identification (SOBI), an independent
component analysis method, to MEG data collected during cognitive
tasks. We explored SOBI’s ability to help isolate underlying neuronal
sources with relatively poor signal-to-noise ratios, allowing their identi-
fication and localization. We compare localization of the SOBI-separated
components to localization from unprocessed sensor signals, using an
equivalent current dipole modeling method. For visual and somatosen-
sory modalities, SOBI preprocessing resulted in components that can be
localized to physiologically and anatomically meaningful locations. Fur-
thermore, this preprocessing allowed the detection of neuronal source
activations that were otherwise undetectable. This increased probability
of neuronal source detection and localization can be particularly bene-
ficial for MEG studies of higher-level cognitive functions, which often
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have greater signal variability and degraded signal-to-noise ratios than
sensory activation tasks.

1 Introduction

Magnetoencephalography (MEG) is a passive functional brain imaging tech-
nique that, under ideal conditions, can monitor the activation of a neuronal
population with a spatial resolution of a few millimeters and with mil-
lisecond temporal resolution (Hämäläinen, Hari, Ilmoniemi, Knuutila, &
Lounasmaa, 1993; George et al., 1995). Typical signals associated with neu-
ronal activity are on the order of 100 fT, while the noise signals within
a shielded room tend to be much larger (Lewine & Orrison, 1995). Fur-
thermore, the intrinsic sensor noise is comparable in magnitude to small
neuronal signals. Therefore, what the sensors record during an experiment
is always a mixture of small neuromagnetic and large noise signals. This
relatively poor signal-to-noise ratio can affect the localization of neuronal
activity.1

Several independent component analysis (ICA) algorithms, such as sec-
ond-order blind identification (SOBI) (Belouchrani, Meraim, Cardoso, &
Moulines, 1993; Cardoso, 1994), Infomax (Bell & Sejnowski, 1995), and fICA
(Hyvärinen & Oja, 1997), have been applied to EEG data (Makeig, Bell, Jung,
& Sejnowski, 1996; Makeig, Jung, Bell, Ghahremani, & Sejnowski, 1997;
Makeig, Westerfield, Jung et al., 1999; Jung, Humphries et al., 2000; Jung,
Makeig et al., 2000) and MEG data (Vigário, Jousmäki, Hämäläinen, Hari,
& Oja, 1998; Tang, Pearlmutter, Zibulevsky, & Carter, 2000; Vigário, Särelä,
Jousmaki, & Oja, 1999; Vigário, Särelä, Jousmäki, Hämäläinen, & Oja, 2000;
Wübbeler et al., 2000; Ziehe, Müller, Nolte, Mackert, & Curio, 2000; Cao et
al., 2000). In both applications, ICA methods have proven useful for artifact
removal and for improving the signal-to-noise ratio (Jung, Humphries et
al., 2000; Jung, Makeig et al., 2000; Vigário et al., 1998; Tang, Pearlmutter,
Zibulevsky, & Carter, 2000). For general reviews of ICA, see Amari and
Cichocki (1998), Cardoso (1998), Hyvärinen (1999), and Vigário et al. (2000).

For MEG, in addition to separating various noise signals from the neuro-
magnetic signals, SOBI and fICA have been shown to separate one neuronal
source from another between and within the same modality (Tang, Pearl-
mutter, Zibulevsky, & Carter, 2000; Vigário et al., 1999, 2000). To localize
functionally independent neuronal sources or to localize and recover the
time course of these neuronal sources simultaneously, a variety of algo-
rithms have been proposed (Mosher, Lewis, & Leahy, 1992; Kinouchi et al.,
1996; Sekihara, Poeppel, Marantz, Koizumi, & Miyashita, 1997; Nagano et

1 Unless otherwise indicated, we use signal-to-noise ratio in the sense defined in signal
detection theory. Signals refer to the neuromagnetic signal of interest. Noise refers to all
other signals, including environmental and sensor noise and other background brain
signals.
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al., 1998; Uutela, Hämäläinen, & Salmelin, 1998; Mosher & Leahy, 1998, 1999;
Schwartz, Badier, Bihoue, & Bouliou, 1999; Sekihara et al., 2000; Huang et
al., 2000; Aine, Huang, Stephen, & Christner, 2000; Ermer, Mosher, Huang,
& Leahy, 2000; Cao et al., 2000; Schmidt, George, & Wood, 1999). Given
their capability to separate noise and neuronal signals, ICA algorithms are
expected to benefit all source localization methods by providing them with
input signals that are more likely to be associated with functionally inde-
pendent neuronal sources.

It was found, however, that the fICA-separated components yielded lo-
calization results qualitatively similar to those arrived at without ICA pre-
processing (Vigário et al., 1999). Consequently, no substantial benefits from
ICA were reported for neuromagnetic source localization. Because one of the
strengths of ICA is its ability to separate noise from the signals of interests,
whether ICA could offer any advantage in source localization should de-
pend on the signal-to-noise ratio in the sensor data. The experiment reported
by Vigário et al. (1999) was optimally designed to produce strong and focal
activation of a small number of neuromagnetic sources, and therefore has
high signal-to-noise ratios. Under such optimal conditions, ICA could not
improve much on the already good localization provided by conventional
methods.

In this article, we apply ICA to neuromagnetic signals with relatively
poor signal-to-noise ratios collected during cognitive tasks involving large
trial-to-trial variability in neuronal source activation and from a much larger
number of sources. We localized these neuronal sources using the equiva-
lent current dipole (ECD) modeling method (Neuromag) on SOBI-separated
components and on unprocessed sensor data. We found that SOBI prepro-
cessing resulted in the localization of neuronal sources that could not be
found when the dipole fitting method was directly applied to the sensor
data. In addition, the process of localizing separated components required
significantly less subjective judgment regarding which sensors to exclude
from the analysis and at what time the dipoles are fitted.2 We suggest
that ICA methods can be particularly effective and efficient in the study of
higher-level cognitive functions when the neuronal source activations are
often characterized by their greater degree of variability and lower signal-
to-noise ratios.

2 Methods

2.1 Cognitive Tasks. We collected MEG data from four right-handed
subjects (two females and two males) during four visual reaction time tasks
originally designed to study temporal lobe memory functions (Tang, Pearl-

2 It is a common practice to select 20 to 30 sensors over the brain region of interest for
dipole fitting.
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mutter, Zibulevsky, Hely, & Weisend, 2000). These tasks are described in
detail in appendix A. Here, we offer a brief description. In each task, a pair
of colored patterns, one of which was the target, was presented on the left
and right halves of the display screen. The subject was instructed to press
either the left or right button when the target appeared on the left or right,
respectively. In all tasks, the target was not described to the subject prior
to the experiment. The subject was to discover the target by trial and error
using auditory feedback (low and high tones corresponded to correct and
incorrect responses, respectively). All subjects were able to discover the rule
within a few trials.

The tasks differed in the memory load required for determining which of
the pair is the target. Task 1 served to familiarize the subjects with all visual
patterns. The subjects simply viewed the stimuli and were asked to press
either the left or right button at their own choice while making sure approx-
imately equal numbers of left and right button presses were performed. As
such, task 1 placed little memory demand on the subject. Task 2 involved
remembering a single target pattern that appeared on each trial paired with
another pattern. Subjects pressed the right or left button to indicate whether
the target pattern was on the left or the right. Task 3 involved remembering
multiple targets, each always paired with the same nontarget. Task 4 was
the most complex. In this task, targets were context sensitive in a circular
fashion, as in the game rock-paper-scissors. The amount of cognitive pro-
cessing beyond the initial sensory processing increased successively from
task 1 to task 4.

We used data from these complex cognitive tasks to evaluate the capa-
bility of SOBI (see section B.1) because of the relatively poor signal-to-noise
ratios involved in comparison to sensory activation tasks. Specifically, these
tasks involved (1) large visual field stimulation without the use of fixation
points, (2) incidental somatosensory stimulation as a result of button presses
during reaction time tasks, and (3) highly variable button press responses
(because precisely what form of the thumb movement should be made, how
the mouse was held, and where the hands rest were not specified). These
sources of variability in visual and somatosensory activation can lead to
poor signal-to-noise ratios in the average responses, making it particularly
difficult to localize the neuronal sources from unprocessed averaged sen-
sor data. The involvement of higher-level cognitive functions, memory de-
mands, and the small number of trials (90 in most cases) collected under
each task condition further decreased the signal-to-noise ratios in the aver-
aged sensor data. These tasks therefore offered a set of challenging data sets
in which the advantages of ICA methods could be revealed.

2.2 Selection of ICA Methods. In selecting ICA algorithms, one impor-
tant consideration is the robustness of the algorithm to sensor noise. Instan-
taneous and summary algorithms are two extremes of ICA algorithms that
differ in whether each point in time is considered in isolation. Instantaneous
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algorithms, such as Bell-Sejnowski Infomax (1995) and fICA (Hyvärinen &
Oja, 1997), make repeated passes through the data set and update the un-
mixing matrix in response to the data at each time point. They are derived
under the assumption that the signals are white, and their results should
therefore be invariant to shuffling of the data. As a consequence, they cannot
take advantage of the temporal structure of each source as a cue for correct
separation. In contrast, summary algorithms first make a pass through the
data while summary statistics are accumulated by averaging; they then op-
erate solely on the summary statistics to find the separation matrix. Some
summary algorithms collect statistics that allow them to make use of the
temporal structure of the sources as a cue for separation. More importantly,
summary algorithms in general should be relatively insensitive to sensor
noise, because their summary statistics are averages over time. The rela-
tively poor signal-to-noise ratios in MEG data suggested the choice of a
summary algorithm rather than an instantaneous algorithm.

When it can be assumed that each source has a broad autocorrelation
function, as is the case with brain signals, the summary algorithm SOBI
(Belouchrani et al., 1993; Cardoso, 1994) can use this temporal structure as
a cue and give high-quality separation while imposing rather modest com-
putational requirements. SOBI extracts a large set of statistics from the data
set, which it uses for the separation. Each of these statistics is calculated
by averaging across the data set, which makes the algorithm robust against
noise. The particular statistics calculated are the correlations between pairs
of sensors at a fixed delay, 〈xi(t)xj(t + τ)〉. This makes good use of abundant
but noisy data, and, most importantly, SOBI can be tuned by modifying its
set of delays (see appendix B), allowing its users to gently integrate a very
weak form of prior knowledge: knowledge of the length constant of the
autocorrelation function. Although Bell-Sejnowski Infomax and fICA have
been previously applied to MEG and EEG data, and other ICA algorithms,
such as contextual ICA (Pearlmutter & Parra, 1996) and sparse decompo-
sition (Zibulevsky & Pearlmutter, 2001), are locally available, we selected
SOBI as our ICA method based on the properties we have set out. However,
we have not conducted a systematic comparison of ICA methods for our
MEG data.

2.3 Second-Order Blind Identification. SOBI is considered blind be-
cause it makes no assumptions about the form of the mixing process. In
other words, SOBI does not attempt to solve the inverse problem or use the
physics of the situation in any way. It does not try to estimate currents or
know about Maxwell’s equation or any of its consequences. The only phys-
ical assumption made about the mixing process is that it is instantaneous
and linear.

Let x(t) be an n-dimensional vector of sensor signals, which we assume to
be an instantaneous linear mixture of n unknown independent underlying
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sources si(t), via the unknown stationary n × n mixing matrix A,

x(t) = As(t). (2.1)

The ICA problem is to recover s(t), given the measurements x(t) and nothing
else. This is accomplished by finding a matrix W that approximates A−1, up
to permutation and scaling of its rows. SOBI assumes that the sources are
statistically independent in time and not necessarily orthogonal in space.
It finds W by minimizing the correlation3 between one recovered source at
time t and another at time t + τ .

The particular set of delays τ we used were chosen to cover a reasonably
wide interval without extending beyond the support of the autocorrelation
function. Measured in units of samples, at our 300 Hz sampling rate, the
delays4 were

τ ∈ { 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 12, 14, 16, 18,

20, 25, 30, 35, 40, 45, 50, 55,

60, 65, 70, 75, 80, 85, 90, 95, 100 }.
Each recovered si(t) also has a sensor space projection that gives the sen-

sor readings of si(t) (see section B.2). This sensor projection can be displayed
as a field map and can be used as input to source localization algorithms.
For example, after calculating its sensor projection, we can repackage a com-
ponent for localization by standard Neuromag dipole fitting software (xfit).

SOBI shares a number of weaknesses with all ICA methods: they all
assume that there are as many sensors as sources, they all make some sort
of independence assumption, they all assume that the mixing process is
linear, and they all assume that the mixing process is stable. (See section 4.3
for further discussion.)

2.4 Localization of Separated Components. SOBI was performed on
continuous5 122-channel data collected during the entire period of the ex-
periment, sampled at 300 Hz, and bandpass filtered at 0.03–100 Hz. It gen-
erated 122 components,6 each a one-dimensional time series with an asso-
ciated field map (see section B.2). Each component potentially corresponds
to a set of magnetic field generators.

3 For justification for this minimization, see section 4.
4 The choice of delays can affect the results of separation. Depending on the types

of sources activated by the behavioral task, the selection of delays can have complex
interactions with the latency of evoked responses. This is an important topic and deserves
separate study.

5 Note that ICA algorithms can also be applied to cross-trial averages rather than
continuous data, as in Makeig, Westerfield, Townsend et al. (1999).

6 ICA algorithms produce the same number of components as there are channels in
their input.
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Event-triggered averages were calculated from their continuous single-
trial time series for all 122 separated components, where the triggering
events were either sensory stimuli or behavioral responses. For the specific
tasks used here, there were typically 10 to 20 components in each experiment
that showed responses locked to either stimuli or button presses. Those with
stimulus- or motor-locked responses were candidate neuronal generators,
since they showed task-related activation. Those with responses locked onto
other external events, such as eye blinks or heart beats (detected using EOG
and EKG), were considered known noise sources. The rest were treated as
non-task-related noise sources.

For a task-related component, if its field map and time course were consis-
tent with known neurophysiological and neuroanatomical facts, we consid-
ered it a neuronal component reflecting the activity of a neuronal generator.
For example, if the field map of a component shows activation over the oc-
cipital cortex and the visual-stimulus-triggered average for this component
contains an evoked response that peaks between 50 and 100 ms, then it is
considered to reflect the activity of a visual source in the occipital lobe. Using
this procedure, neuronal and nonneuronal generators were separated and
identified (Tang, Pearlmutter, Zibulevsky, & Carter, 2000; Tang, Pearlmut-
ter, Zibulevsky, Hely et al., 2000). A dipole fitting method was then applied
to the identified neuronal components. The input to the dipole fitting algo-
rithm (Neuromag, xfit, least square) was the field map, and the output was
the location of ECDs projected onto the subject’s structural MRI images.

This same dipole fitting algorithm was used for localization with and
without SOBI preprocessing. Because our goal was to evaluate whether
ICA methods can improve source localization, we were not concerned with
whether the least-square dipole fitting was as good as more recent and more
sophisticated source modeling methods. Our interest was not in localization
accuracy per se but in the comparative performance of a given localization
method when used alone, as opposed to being coupled with ICA.

In statistical comparison, to match the common practice in source model-
ing without SOBI, a subset of channels (20 to 30) over the region of interest
was selected for dipole fitting with both methods. To localize each sep-
arated component, we chose channels over the region of interest showing
stronger responses to the source. For localization without SOBI (the conven-
tional practice), we began with the channels selected for SOBI localization
and then modified the selections to obtain a more dipolar field pattern.7 If
these modifications improved the results, then we used them; otherwise,
we used the original channel selections. This procedure gave the conven-
tional practice an advantage because the event-triggered-average responses

7 A field map is judged dipolar by visual inspection (Hari & Salmelin, 1997). If it
contains two sets of concentric contour lines, the field is considered dipolar. If it contains
more or fewer than two sets, the field is not dipolar.
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were cleaner in the separated components than in the raw data. In fact, the
raw data were often so noisy that no channels could have been selected by
following the same procedure on the raw data, and therefore no localiza-
tion could have been performed without the channel selection information
enabled by SOBI.

To localize a component, we used its field map as input to the dipole
fitting program.8 One can select any time during the average time window
to fit the dipole because the dipole solution for a component is invariant
to time (see section B.2). These independence of localization results from
the dipole fitting time can significantly simplify the dipole localization pro-
cess, making it less subjective than dipole localization directly from the
sensor data, without the use of ICA. Using the conventional method, the
time at which a dipole was fitted affects the final estimated dipole loca-
tion.

To localize neuronal sources without SOBI preprocessing, we used event-
triggered sensor data (averages) as inputs to the dipole fitting program. We
first chose the time with the largest evoked-response amplitude within the
time window of interest. Then a subset of channels (20 to 30) over the region
of interest was selected. When the contour maps were single-dipolar for the
selected channels at the time chosen, a single dipole fit was performed.
Otherwise, multiple dipoles were fitted. (For details of the process, see the
xfit manual.) In the examples shown in the figures in this article, all channels
were used in the dipole fitting to show that SOBI can identify dipolar sources
without any channel selection.

3 Results

3.1 SOBI Decomposition: Time Courses and Sensor Projections. Us-
ing SOBI, continuous MEG signals from 122 channels were separated into
122 components, each with a time course and an associated sensor projec-
tion. The time course can be averaged across multiple trials using either
the visual stimulus onset or the button press as a trigger. It can also be dis-
played as an MEG image (e.g., see Figure 6, right), a pseudo-colored bitmap
in which the responses of a given component during an entire experiment
can be parsimoniously displayed (Jung et al., 1999). Typically, each row
represents one discrete trial of stimulation, and multiple trials are ordered
vertically from top to bottom. (See section B.3 for details on the process of
giving sensible units to the components.) As shown in the overlay plots of
the visual stimulus and button press triggered averages for all 122 com-
ponents (see Figures 1c and 1d), only a small fraction of the components

8 Theoretically, one sampling point in time across all sensors contains all information
about a source. In practice, the Neuromag software needs a time series of at least sev-
eral samples. Therefore, we calculated the event-triggered average for the component of
interest and made an input .fif file containing the average.
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Figure 1: Event-triggered averages for groups of separated components (N = 90
trials). (a) Components showing visual-stimulus-triggered responses, triggered
on visual stimulus onset. (b) Components showing button-press-triggered re-
sponses, triggered on button presses. (c) All components, triggered on visual
stimulus onset. (d) All components, triggered on button presses.

showed task-related responses. For clarity, these task-related components
are shown separately in Figures 1a and 1b.

The components can be displayed in the sensor domain in field maps
(see Figure 6, left) or in a full view graph using the Neuromag software xfit
(see Figures 2–5). The sensor projections for two components are shown:
one for a visual component (see Figure 2) and the other for a sensorimotor
component (see Figure 3). It is clear that the two components are projected
selectively to sensors over the visual and sensorimotor cortices. For compar-
ison, the full view plots of the sensor projection from the raw data (mixture
of all components) are shown in Figures 4 and 5.

3.2 Energy in Separated Components. We divided components into
six categories: visual, somatosensory, ocular artifacts, 60 Hz, sensor jumps,
and other.9 Visual and somatosensory components were identified by their
clearly visible evoked responses in the MEG images and by their activa-

9 Sensor jumps refer to a peculiar property of the SQUID sensors that cause an enor-
mous and nearly instantaneous DC shift. “Other” includes any components that do not
belong to the first five categories.
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20fT/cm200ms

Figure 2: Sensor projection of components showing selective sensor activation
over the occipito-parietal cortex (N = 90 trials, visual stimulus triggered aver-
ages). Compare with unseparated data in Figure 4.

tion patterns in the field maps (see the following sections). These neuronal
components were further verified by the consistency between the response
latency, shown in the MEG images, and the spatial location of sensor acti-
vation, shown in the field maps (see subsequent sections). Ocular artifact
sources were identified by their characteristic activation patterns in the field
map and their large-amplitude responses in the MEG image (see Figure 6a),
which match signals measured by EOG (not shown). The 60 Hz components
were identified by the clearly visible 60 Hz cyclic activity in the MEG images
in Figure 6b (see also Tang, Pearlmutter, Zibulevsky, & Carter, 2000). Sensor
jump components were easily identified by the single-sensor activation in
the field maps and sometimes by high-contrast lines or dots in the MEG
images (see Figure 6c).

For these five types of identified components, we calculated the amount
of energy in each (see section B.4), across all subjects and all tasks, using
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50fT/cm200ms

Figure 3: Sensor projection of components showing selective activation over
the right fronto-parietal cortex (N = 90 trials, button-press-triggered averages).
Compare with unseparated data in Figure 5.

a window of 200 ms after either the visual stimulus presentation or the
button presses10 (see section B.4). This window was chosen to cover all
neuronal responses. The amount of energy in a single component varied
widely, between 0.17% and 71% of the total energy across all sensors. This
range differed among the five categories of the components (see Table 1).
The energies in the visual and somatosensory components (using visual
stimuli and button presses as triggers respectively) were 10.0±1.02% (N =
29) and 4.65±0.74% (N = 10). Using button presses as triggers (because
subjects tended to blink after the button press responses), the energy in
the ocular artifact components was 24.86±4.67% (N = 16). Since both 60 Hz
signals and sensor jumps were not task related, the energy in these two types
of components was calculated using both visual stimulation and button

10 Window specification affects the calculated energy.
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100fT/cm200ms

Figure 4: Visual-stimulus-triggered averages of unseparated data, N = 90 trials.
Aberrant sensors are shaded.

presses as triggers and then averaged. The total energy in the 60 Hz sources
was 10.19±1.73% (N = 32), and the total energy in the sensor jump sources
was 1.72±0.28% (N = 13). The ocular artifact and 60 Hz components have
the most energy, while the energy in the neuronal components represented
10% or less of the total.

Table 1: Range of Energy Accounted for (% of Total Energy Across All Channels)
by the Five Categories of Components.

Category Minimum Maximum

Visual 0.21 24
Somatosensory 0.47 14
Ocular artifact 0.57 72
60 Hz 0.26 44
Sensor jump 0.17 12
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100fT/cm100ms

Figure 5: Button-press-triggered averages of unseparated data, N = 90 trials.
Aberrant sensors are shaded.

3.3 Localization of Separated Components: Examples. Using the sen-
sor projection of task-related components as input to the Neuromag soft-
ware (xfit), we localized separated components. In conventional source lo-
calization practice, very often only 20 to 30 channels are selected for source
localization. To show how well SOBI can isolate one neuronal source from
another without relying on channel exclusion, throughout sections 3.3 and
3.4, we generated the field maps, contour plots, and dipole localizations for
components using all channels (i.e., without channel exclusion). To make the
localization results comparable between using SOBI and not using SOBI, a
subset of 20 to 30 channels was selected in dipole fitting in section 3.5, which
provides statistical comparisons.

3.3.1 Visual Component. As the tasks involved simultaneous bilateral
visual stimulation and judgment of its spatial location and identity, we
expected SOBI to isolate visual components in the occipital, parietal, and
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Figure 6: Field maps and unfiltered MEG images for (a) an ocular artifact com-
ponent, (b) 60 Hz component, and (c) sensor jump component.

temporal lobes. Components with visual evoked responses indeed showed
field map activation over occipital, parietal, and temporal lobes (not shown).
For the particular stimuli used in these experiments, temporal sources were
more variable in their precise location and temporal profiles. In contrast,
occipito-parietal lobe activation appeared to have the greatest signal am-
plitudes and was reliably identified across multiple subjects. Figure 7 (left)
shows the dipole location of one such occipito-parietal visual source along
with its field map and time course.

3.3.2 Somatosensory Component. As the tasks involved button presses,
we expected both somatosensory and motor responses from the sensory and
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Figure 7: Examples of separated (left) visual, (middle) somatosensory, and
(right) auditory components, shown in (a) event-triggered averages (N = 90
trials, stimulus onset at t = 0), (b) field maps, (c) contour plot, and (d) the fit-
ted dipole superimposed on the subject’s structural MRI images. All sensors
(channels) were used in generating the contour plots and fitting the dipoles.

motor areas. Figure 7 (middle) shows the dipole location of one component
in the left hemisphere. Notice that this dipole is near the region where one
finds dipoles from median nerve stimulation (Hari & Forss, 1999; Tesche &
Karhu, 1997) and that the median nerve services the thumb. The time course
of the response suggests that this response is unlikely to be a response from
the motor cortex because the activations associated with motor prepara-
tion are typically estimated to be 385±85 ms before the movement onset
(Hoshiyama et al., 1997), much earlier than the latency shown here. The
motor-evoked sensory responses with an estimated onset time of approx-
imately 20±30 ms after the onset of movement (Hoshiyama et al., 1997)
matched best to our button-press-elicited responses. Therefore, this com-
ponent corresponds to a somatosensory source instead of a motor source.
In contrast to typical fast-rising somatosensory responses recorded using
median nerve stimulation (Hari & Forss, 1999; Tesche & Karhu, 1997), the
slow-rising somatosensory responses recorded here were elicited by stim-
ulation to the thumb due to button presses. These temporal profiles are
expected to differ due to the difference between a very brief and focal elec-
tric shock and a much longer and distributed stimulation to the thumb and
its surrounding areas.

3.3.3 Auditory Component. Because the tones were presented as feed-
back, auditory responses were expected from the auditory cortex. In contrast
to the typical auditory responses recorded during a simple auditory oddball
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task, the auditory responses from our experiment were most likely to over-
lap with and perhaps to be affected by visual, motor, and somatosensory
processing. Because both auditory responses and somatosensory responses
were triggered on the button press, auditory responses needed to be dis-
tinguished from the somatosensory sources. The spatial location of their
fitted ECDs in the auditory cortex and their longer response latencies were
sufficient to allow the disambiguation. Figure 7 (right) shows one unilateral
auditory source, with slow-rising and long response latency, localized to the
vicinity of the lateral fissure, as expected for auditory activation (Cansino,
Williamson, & Karron, 1994).

The relatively longer response latency (∼180 ms) may be due to partic-
ular aspects of the task (see appendix A). Specifically, in order to process
the auditory feedback, the subjects must first switch their attention from the
visual to the auditory modality, and this takes time. Furthermore, the sub-
jects must process and interpret the auditory stimulus in evaluating their
behavioral response and registering the correct target stimuli into memory.
This additional processing may account for the difference in the temporal
profile of the auditory responses. As the tones were bilaterally presented,
one would expect auditory components with field maps showing bilateral
activation. The auditory components recovered in these experiments, how-
ever, were unilateral for two subjects and bilateral for the other two. This
variability across subjects could be due to differences in cerebral dominance
of auditory processing. A difference in the temporal aspect of the left and
right auditory processing could be expected to lead to the identification of
two separate left and right components.

In comparison to visual and somatosensory components, auditory com-
ponents were much more difficult to identify, perhaps due to the com-
plexity and associated variability. Although in most cases auditory com-
ponents could be identified from visual inspection of the field map and
event-triggered averages, the signal-to-noise ratios were too poor to per-
mit consistent dipole fitting across tasks and across subjects. Therefore, the
following more detailed and systematic analysis of localization results will
focus on only visual and somatosensory sources.

3.4 Cross-Task and Cross-Subject Reproducibility in Localization of
Components. To show how reproducible the localization of components
can be across the four cognitive tasks, we examined separated visual com-
ponents from one subject. Across tasks, two occipito-parietal visual sources
were reliably localized within the same subject from two separated com-
ponents. For both visual sources, the time course of the response is highly
repeatable across multiple tasks, as shown in the overlay plot (see Figures 8a
and 8b). The earlier visual responses were almost identical in both ampli-
tude and response latency (see Figure 8a), while the later responses varied
only in amplitude across tasks (see Figure 8b). Given the number of sub-
jects in this study (four), we do not have the statistical power to draw any
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Figure 8: Cross-task consistency in the (a, b) temporal profile and (c, d) dipole
location of two visual components. (a, c) Occipital and (b, d) occipito-parietal
sources can be identified and localized consistently across multiple tasks (over-
lay). (a, b) Visual stimulus-triggered averages from four visual tasks, overlaid
(N = 90 trials per task). (c, d) Corresponding single ECDs for visual sources in a,
b. Notice the consistency of the dipole locations across tasks. Notice also that the
temporal profile of the earlier visual source (a) did not differ across tasks, but the
amplitude of the later visual source (c) was modulated by the task conditions.

conclusions about whether the amplitude increases monotonically with the
complexity of the task.

These visual components identified from different tasks were localized
to similar locations within the occipital and parietal lobes, as shown in
Figures 8c and 8d, in which fitted dipoles from multiple experiments are
superimposed on the subject’s structural MRI images. Notice that in the
field map, the right side of the head is shown on the right, whereas in the
structural MRI images, following radiological convention, the right side is
shown on the left.

To show how reproducible the localization of components can be across
subjects, we examined separated somatosensory components from three
subjects.11 In all three subjects, we reliably identified two components (left

11 The fourth subject did right-hand index-midfinger button presses, which differed
from the rest of the subjects.
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Figure 9: Somatosensory sources can be identified and localized consistently
across multiple subjects (shown for the left source). Similar to Figure 7 except
the responses were triggered by the button press.

and right) with button-press-locked responses in the somatosensory areas.
Figure 9 shows the time course, field map, contour plot, and fitted dipole
for the somatosensory components in the right hemisphere of the three
subjects. Notice the cross-subject similarity in the field maps, contour plots,
and dipole locations (somatosensory cortex in the anterior parietal lobe,
post-central sulcus).

3.5 Detecting Expected Neuronal Sources With and Without SOBI. To
offer quantitative comparison in the relative performance of source local-
ization with and without SOBI, we attempted to identify and localize the
most reliable occipito-parietal visual source and both the left and right so-
matosensory sources in all subjects and all tasks from separated components
and from the unprocessed data. Because all four tasks involved bilateral pre-
sentation of visual stimuli, we expected that at least one visual source would
be found active in the occipito-parietal cortex. Similarly, because separate
left and right button presses were required by all the tasks, we also expected
that at least one left and one right somatosensory source would be active.
For these expected sources, we attempted to localize the source with dipole
fitting from separated components and from the raw sensor data (without
SOBI). The percentage of the expected sources for which dipole solutions
can be found are compared for localization with and without the aid of
SOBI.

For a component to be considered a detectable neuronal source, there
must be an evoked response that clearly deviates from the baseline in the



Localization of ICA Components 1845

averaged component data. We rejected all components with any ambiguity
on this criterion. Second, the components must have a field map showing
focal activation of sensors over the relevant brain regions (occipito-parietal
cortex and anterior parietal cortex in this study). Third, the contour plot
for the component must be dipolar. Finally, the fitted dipole must be in
the relevant cortical areas. For a source to be considered detectable using
the conventional method of localization, one must first identify a sensor at
which the largest evoked response is found. Second, the contour plot must
be dipolar at the peak time. Finally, in a few cases when multiple dipole
solutions are needed, at least one of the dipoles is localized to the expected
brain region.

3.5.1 Visual Sources. Among all separated components, for each subject
and each task, we were able to identify and localize an occipito-parietal vi-
sual source with a single dipole (100% detectability). These occipito-parietal
components invariantly had very focal sensor projections (see the field maps
in Figure 7b), and the contour plots were invariably dipolar even without
channel selection (for example, see the field map and contour plot in Fig-
ure 7a). Single dipoles were fitted for these occipito-parietal components.
A subset of channels over the occipito-parietal lobe (20 to 30 channels) was
used for the purpose of fair comparison with the conventional analysis
method without the aid of SOBI. The peak response latencies of these com-
ponents (N = 16) were 139.0±7.6, and the dipole coordinates (X,Y,Z) were
7.5±2.6, −49.4±3.2, and 68.6±3.4 mm.

Using the conventional method of source localization directly from the
unseparated sensor data, dipoles were fitted using the same or similar sub-
set of channels selected over the occipito-parietal cortex. In all subjects and
all tasks, the conventional method identified and localized at least one vi-
sual source in the occipito-parietal lobe (100% detectability). Of a total of
16 expected sources (4 tasks by 4 subjects by 2 sides), 10 could be fitted
with a single dipole, 4 were fitted with two-dipole solutions, 1 was fitted
with a three-dipole solution, and 1 was fitted with a four-dipole solution.
When multiple dipole solutions were needed, at least one of them was local-
ized to the occipito-parietal cortex. This variation in dipole solutions may
reflect some individual differences in visual processing occurring outside
the occipito-parietal cortex. The peak response latencies of these occipito-
parietal visual sources (N = 16) were 143.6±5.5, and the dipole coordinates
(X,Y,Z) were 4.21±4.8, −55.89±2.68, and 59.42±3.83 mm.

3.5.2 Somatosensory Source. From components of all subjects and all
tasks, with only two failures we were able to identify and localize 22 of
the 24 expected left and right somatosensory sources with a single dipole (3
subjects by 4 tasks). All 22 somatosensory components had very focal sensor
projections (see the field maps in Figure 9b), and their contour plots were
all highly dipolar even without channel selection (for example, see the field
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Figure 10: SOBI increased the detectability of expected neuronal sources for the
more variable somatosensory activation.

map and contour plot in Figure 9). Single dipoles were fitted to these com-
ponents, with a subset of channels over the somatosensory cortex (20 to 30
channels) selected for the purpose of fair comparison with the conventional
analysis method. The peak response latencies were 3.3±4.2 and 0.8±3.4 ms
for the left (N = 11) and right (N = 11) somatosensory sources, respectively.
The dipole coordinates (X,Y,Z) were −39.4±2.4, 7.8±2.7, and 84.6±1.7 for
the left and 45.69±2.1, 5.6±2.2, and 84.1±3.1 for the right somatosensory
sources.

Using the conventional method of source localization directly from the
unseparated sensor data, dipoles were fitted using the same or similar sub-
set of channels selected over the somatosensory cortex. Only 9 out of 24
expected left and right somatosensory sources could be identified and lo-
calized following the conventional method of identifying a peak response
in the averaged sensor data. Of 24 sources expected (3 subjects by 4 tasks
by 2 sides), in 7 cases no visible peak response could be identified in any
of the sensors. Of the remaining 17 cases in which peak responses could
be found in at least one sensor over the somatosensory cortex, 4 did not
have dipolar fields, and 4 resulted in dipole locations outside the head or in
the auditory cortex. Single dipole solutions were found in only 9 cases. The
peak response latencies of these somatosensory sources were −5.2±2.5 for
the left hemisphere (N = 5) and 1.6±1.8 for the right hemisphere (N = 4).
The dipole coordinates (X, Y, Z) were −43.3±3.9, 12.1±5.6, and 82.8±3.8 for
the left 42.3±5.5, 15.9±2.7 and 89.9±1.4 for the right sources.

3.6 Statistical Comparisons. There was no significant difference in the
detectability for the occipito-parietal source measured with and without
SOBI. In contrast, SOBI preprocessing resulted in an increase in the de-
tectability of the expected somatosensory sources (chi squre, test p < .0001)
(see Figure 10). The peak response latencies for the visual and somatosen-



Localization of ICA Components 1847

sory sources did not differ significantly when measured using and without
using SOBI. For the visual sources, the precise dipole locations estimated
with and without SOBI did not differ in the X and Y dimensions but nearly
differed significantly in the Z dimension (p = 0.05). For the somatosensory
sources, the precise dipole locations differed significantly in the Y dimen-
sion (p < 0.05) for the left source and in the Y and Z dimensions for the
right source (p < 0.05). Because the true accuracy of source locations can-
not be determined from these experiments without a depth electrode, no
quantitative comparisons can be made concerning accuracy.

4 Discussion

We identified and localized visual and somatosensory sources activated in
four subjects during four cognitive tasks. Due to the relatively large vari-
ability involved in highly cognitive tasks and the small number of trials
collected, these tasks were characterized by relatively poor signal-to-noise
ratios in the sensor data and therefore were ideal for evaluating differential
localization performance. Our results showed that despite the large vari-
ability associated with the visual and somatosensory activations during
these particular tasks, SOBI was able to separate identifiable visual and so-
matosensory components that were further localized to the expected corti-
cal regions. The physiological and neuroanatomical interpretability of these
components across multiple sensory modalities and their cross-subject and
cross-task reproducibility establish SOBI as a viable method for separating
and identifying neuronal populations from MEG data during fairly com-
plex cognitive tasks. Most importantly, we showed that SOBI preprocess-
ing offered a special advantage when the evoked responses in the sensor
data had poor signal-to-noise ratios. Specifically, for the highly variable
somatosensory activation evoked by incidental stimulation during button
presses, SOBI preprocessing resulted in a greater percentage of the expected
somatosensory sources being identified and localized than the same dipole
modeling method applied directly to the raw sensor data.

4.1 SOBI Reduced Subjectivity and Labor in Source Localization. In
conventional source localization, there are two major sources of subjectiv-
ity: the selection of dipole fitting times and the selection of channels. Both
are eliminated by our proposed procedure. First, because each component
has a fixed field map, the dipole fitting solutions for components were not
sensitive to either the time at which the dipoles were fitted or to the sen-
sor used for determining the time of fit (see section B.2). Within this map,
each sensor reading reflects only activation due to a single source genera-
tor, or several temporally coherent generators as opposed to activation due
to a combination of multiple generators, each with a different time course.
Therefore, using SOBI, there is no need to subjectively select a time from
a sensor for dipole fitting. Second, simple components, which have field
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activation over early sensory processing areas, were almost always dipolar
even without channel selection or reduction.12 Therefore, channel selection
is not necessary. One way to see the difference between dipole localization
with and without SOBI processing is to view SOBI as a more automatic and
more objective tool that allows the isolation of sensor activation due to an
already isolated functionally independent generator. The reduced subjec-
tivity and time required to find dipole solutions can make data analysis and
training of new researchers for MEG more cost-effective.

4.2 SOBI Improved Detectability of Neuronal Sources. The advan-
tages of ICA algorithms in general have been shown in a number of appli-
cations to EEG and MEG data. First, these algorithms can separate neuronal
activity from various artifacts (Makeig et al., 1996; Vigário et al., 1998; Tang,
Pearlmutter, Zibulevsky, & Carter, 2000; Ziehe et al., 2000; Jung, Humphries
et al., 2000; Jung, Makeig et al., 2000), such as eye blinks. In contrast to
methods that rely on the use of a template, ICA removes these artifacts
without any prior assumptions about the nature of the waveforms. Second,
ICA isolates physiologically and behaviorally meaningful components that
describe previously unavailable aspects of neuronal activity (Makeig et al.,
1997; Makeig, Westerfield, Jung et al., 1999; Wübbeler et al., 2000). Finally,
ICA-separated neuronal sources are less contaminated by various noise
sources, which allows single-trial response detection (Jung et al., 1999; Tang,
Pearlmutter, Zibulevsky et al., 2000; Carter et al., 2000). ICA methods have
been able to distinguish the absence of rhythmic activity from the absence
of phase-locked rhythmic activity (Makeig, Townsend et al., 1999).

We have shown that SOBI separation of the data resulted in a greater de-
tectability of somatosensory sources but did not increase the detectability of
visual sources. This modality-specific improvement in source detectability
depended on the signal-to-noise ratios in the sensor data. Because visual
responses could be clearly identified from the raw sensor data even with-
out the aid of SOBI, it would not have been possible for SOBI to improve
the detection rate. In contrast, the relatively poor signal-to-noise ratios in
the raw sensor data for the somatosensory responses caused many failures
in identifying a sensor at which a peak response occurred and in deter-
mining the peak response time. Under this poor signal-to-noise condition,
in all but two cases, SOBI preprocessing resulted in separated components
with the characteristic field map, characteristic temporal response profile,
and the correct dipole location for a somatosensory source. These findings
suggest another advantage that ICA algorithms can offer: improving the
ability to detect and localize neuronal sources that are otherwise difficult

12 SOBI also separated out many complex components, which have multiple patches
or very broad field activation. These components may reflect synchronized activation
in multiple brain regions. Functional connectivity may be inferred among these brain
regions.
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to detect or are undetectable under relatively poor signal-to-noise condi-
tions.

This improvement has significant practical implications. First, brain re-
gions involved in higher-level cognitive processing tend to show greater
trial-to-trial variability in their activation and therefore have lower signal-
to-noise ratios in the average responses. Second, behavioral tasks that bear
greater resemblance to real-world situations tend to involve greater vari-
ability in both stimulus presentation and subsequent processing. Finally,
studies of clinical patients and children are often limited by the length of
the experiment and therefore often provide data from a limited number of
trials. Our results suggest that ICA may offer an improved capability in
detecting and localizing neuronal source activations in these difficult situa-
tions.

4.3 Assumptions of SOBI. Here, we discuss assumptions of particular
relevance to SOBI and MEG rather than general issues in ICA. Like all other
ICA algorithms, SOBI assumes that the mixing process is stable. In the con-
text of MEG, a stable mixing process corresponds to assuming that the head
is motionless relative to the sensors. For this reason, head stabilization can
be particularly important in MEG when ICA is used. SOBI also assumes
that there are at least as many sensors as sources. For us, this is not a serious
problem, as our MEG device has 122 sensors, yet we recover only a few
dozen sources that show task-related evoked responses. The observation
that only a small number of sources are active during typical cognitive and
sensory activation tasks is consistent with the results of studies using both
EEG (Makeig, Westerfield, Jung et al., 1999) and MEG (Vigário et al., 2000).
The crucial assumption in ICA is that of independence. (For a thorough dis-
cussion of the independence assumption as it pertains to MEG, see Vigário
et al., 2000.) Here, we will discuss independence only in the context of the
particular measure of independence used by SOBI.

One problem that EEG and MEG researchers have with the independence
assumption arises from the fact that if one computes correlations between
EEG or MEG sensor readings over multiple brain regions during behavioral
tasks, one would find that some brain regions have nonzero correlations.
A good example of correlated brain activity is the apparently correlated
evoked responses from neuronal populations in multiple visual areas along
the processing pathway during a visual stimulus presentation. Based on
such an observation, one could conclude that as the statistical independence
assumed by ICA is clearly violated, the results of ICA must not be trusted.
Yet we have shown that SOBI was able to separate visual components that
clearly correspond to neuronal responses from early and later visual pro-
cessing stages that are correlated due to common input (Tang, Pearlmutter,
Zibulevsky, Hely et al., 2000). Others (Makeig, Westerfield, Jung et al., 1999;
Vigário et al., 2000) have produced behaviorally and neurophysiologically
meaningful components under a variety of task conditions.
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As different ICA algorithms use the independence assumption differ-
ently, we offer the following explanation that applies specifically to SOBI.
One needs to recognize that correlation is not a binary quantity. Conse-
quently, neither is violation of the independence assumption. The important
question is not whether the assumption is violated but whether the assump-
tion is sufficiently violated such that the estimated neuronal sources by SOBI
are no longer meaningful. The way SOBI uses the independence assumption
is to minimize the total correlations computed with a set of time delays, as
described in section B.1. As such, each delay-correlation matrix Rτ generally
makes only a small contribution to the objective function. For example, the
correlation one would observe between V1 and V2 responses could be high
only at or around one particular time delay, say, in R20ms. In optimizing its
objective function, SOBI can leave a particularly large nonzero off-diagonal
element—say, the one corresponding to the 20 ms delayed correlation be-
tween V1 and V2, when minimizing the sum squared off-diagonal elements
across all the components and time delays. Therefore, this particular method
of maximizing independence is not necessarily incompatible with a large
correlation at a particular time delay between two sources sharing common
inputs.

Most ICA algorithms, including SOBI, minimize some objective function.
It is possible for the optimization process to find a poor local minimum. In
general, poor results can result from many underlying causes—for exam-
ple, poor experimental design, poorly conducted experiments, poor head
stabilization, poor optimization within the ICA algorithm, or violation of as-
sumptions. No amount of attention to any one possible problem can validate
ICA-based methods for processing functional brain imaging data. As with
any other statistical procedure, the real issue here should not be whether
assumptions are violated at all but whether the algorithms can robustly pro-
duce separated components that are behaviorally, neuroanatomically, and
physiologically interpretable, despite some violation of the assumptions un-
der which the algorithms were derived. For example, t-tests are very robust
against the violation of normality assumption and are therefore regularly
performed on data that are not guaranteed to be gaussian. Only empirical
results can give confidence that a method is correctly separating the MEG
data.

4.4 Summary. Establishing that (1) SOBI preprocessing can lead to the
identification and localization of physiologically and anatomically mean-
ingful neuronal sources and (2) SOBI preprocessing can increase the suc-
cess rate in detecting and localizing neuronal source activation under poor
signal-to-noise conditions is only the first step in demonstrating the useful-
ness of ICA algorithms to the analysis and interpretation of MEG data. The
next steps include systematically studying the effect of ICA on source local-
ization when ICA methods are combined with more sophisticated source
localization algorithms (Ribary et al., 1991; Aine et al., 1998; Mosher & Leahy,
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1999; Schmidt et al., 1999) and exploring the possibility of measuring single-
trial response onset times in ICA separated neuronal sources. Currently in
submission is a closely related article, “Independent Component of Magne-
toencephalography: Single-Trial Response Onset Time Detection.”

Appendix A: Experimental Details

Continuous 122-channel data were collected during the entire period of the
following four tasks sampled at 300 Hz and bandpass filtered at 0.03 to
100 Hz. Each subject performed four visual reaction time tasks. In all tasks,
each trial consisted of a pair of colored abstract block compositions, one of
which was the target, presented symmetrically and simultaneously on the
left and right halves of the screen. Subjects were instructed to respond as
quickly and as accurately as possible with a left- or right-hand mouse button
press when the target stimulus was presented to the left or right side of the
display screen, respectively. The button press elicited an auditory feedback
indicating whether a correct or incorrect response was made.

Stimuli were presented either on a 15-inch VGA computer monitor at
a distance of 48 inches and occupying 7.6 degrees of visual angle or back-
projected by an LCD projector positioned so that the stimulus occupied
the same visual angle. In all tasks, the interval between the motor response
and the next stimulus presentation was 3.0±0.5 seconds. Auditory feedback
was composed of 2000 Hz and 500 Hz tones indicating correct and incorrect
choices, respectively.

The four tasks differed from each other primarily in their definition of the
target stimulus, which affected how much processing was required for tar-
get determination. The precise duration of each task varied slightly across
subjects, depending on the subject’s reaction time. Therefore, typical dura-
tions are given below. The first task (stimulus preexposure) consisted of 270
trials. It took the subjects approximately 30 minutes to perform this task.
The other three tasks (elemental discrimination, trump card, and transverse
patterning) each consisted of 90 trials that were subsets of the same stimuli
contained in the first task. Each of these three tasks took approximately 10
minutes to complete. For each subject, all four experiments were performed
on the same day but each in a separate session. Instructions for each ex-
periment were given immediately prior to that experiment. Subjects were
permitted to move between experiments. Head positions were recalibrated
at the beginning of each experiment. Subjects performed the four exper-
iments in order of increasing task demand: stimulus preexposure, trump
card task, elemental discrimination task, and transverse patterning task:

1. Stimulus pre-exposure task. There were no predefined relationships be-
tween stimuli and button presses. No feedback was given to the sub-
jects about any choice. The subject was instructed to examine both
stimuli and then make a roughly equal number of right and left but-
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ton presses, without consistent alternation between right and left re-
sponses. The sequence of presentation was random. Presentations of
each stimuli on the left and right sides of the video screen were coun-
terbalanced.

2. Trump card task. Subjects were instructed to discover by trial and error
which of the two stimuli in the stimulus pair was the target (the trump
card). Nine stimulus pairs involving 10 stimuli were used, with a
single stimulus as the trump card. Subjects did not have any problem
in discovering the trump card within a few trials.

3. Elemental discrimination task. Subjects were instructed to discover which
one of the stimulus pair was the target stimulus by trial and error.
Three stimulus pairs consisting of six stimuli were used. For each
pair of stimuli, one of the pair was the target. This task differs from
the trump card task in that multiple target stimuli were involved. All
subjects found the targets within a few trials.

4. Transverse patterning task. Subjects were instructed to discover which
of the two stimuli in a stimulus pair was the target. Three stimulus
pairs consisting of three stimulus compositions were used. Each stim-
ulus could be a target or nontarget depending on what it was paired
with. The target definition was a “rock-paper-scissors” arrangement:
A wins when paired with B, B wins when paired with C, C wins when
paired with A. Again, subjects were able to discover the winning re-
lationships after a few trials.

Appendix B: Mathematical Methods

B.1 SOBI Source Separation Algorithm. The SOBI algorithm (Belouch-
rani et al., 1993) proceeds in two stages. First, the sensor signals are zero-
meaned and presphered as follows:

y(t) = B(x(t) − 〈x(t)〉). (B.1)

The angle brackets 〈·〉 denote an average over time, so the subtraction guar-
antees that y will have a mean of zero. The matrix B is chosen so that the
correlation matrix of y, 〈y(t)y(t)T〉, becomes the identity matrix. This is ac-
complished by moving to the PCA basis using B = diag(λ

−1/2
i )UT, where λi

are the eigenvalues of the correlation matrix 〈(x(t) − 〈x(t)〉)(x(t) − 〈x(t)〉)T〉
and U is the matrix whose columns are the corresponding eigenvectors, that
is, the “PCA components” of x. (This presphering is solely for the purpose
of improving the numerics of the situation by constraining the matrix V
below to be a rigid rotation.)

For the second stage, one constructs a set of matrices that, in the correct
separated basis, should be diagonal. We chose a set of time delay values τ
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to compute symmetrized correlation matrices between the signal y(t) and
a temporally shifted version of itself,

Rτ = sym(〈y(t)y(t + τ)T〉) (B.2)

where sym(M) = (M+MT)/2 is a function that takes an asymmetric matrix
and returns a closely related symmetric one. This symmetrization discards
some information, but the problem is already highly overconstrained, and
the symmetrized matrices provide valid, albeit slightly weaker, constraints
on the solution.

After calculating the Rτ , we look for a rotation V that jointly diagonal-
izes all of them by minimizing

∑
τ

∑
i�=j(V

TRτ V)2
ij, the sum of the squares

of the off-diagonal entries of the matrix products VTRτ V, via an itera-
tive process (Cardoso & Souloumiac, 1996; using MATLAB code available
on-line at http://sig.enst.fr/∼cardoso/). The final estimate of the separa-
tion matrix is W = VTB, which is used to calculate the separated compo-
nents ŝ(t) = Wx(t).

B.2 Separated Components in Sensor Space. Since W is the estimated
unmixing matrix, let us use ŝ(t) = Wx(t) for the consequent estimated
sources, and Â = W−1 for the corresponding estimated mixing matrix.
Using these, the sensor signals resulting from just one of the components
can be computed as x̂(t) = ÂDWx(t) = ÂDŝ(t), where D is a matrix of zeros
except for ones on the diagonal entries corresponding to each component
that is to be retained.

To localize a single component, one computes

x̂(i)(t) = ŝi(t)â(i), (B.3)

where â(i) is the ith column of Â and x̂(i)(t) is the sensor space image of source
i. Because x̂(i)(t) is at each point in time equal to the unchanging vector â(i),
scaled by the time course ŝi(t), dipole fitting algorithms will localize x̂(i)(t)
to the same location no matter what window in time is chosen.

B.3 Scaling. Blind source separation leaves the freedom to choose an
arbitrary scale factor for each component. For instance, the source si(t) could
be scaled up by a factor of 10 and the ith column of A scaled down by the
same factor of 10, giving rise to the exact same observation x(t). Making a
reasonable assumption that all the sensors have intrinsic gaussian noise of
the same magnitude, we used the additivity of these independent sensor
noises to scale each row of W to give each row a vector length of one. That
is, if W̃ is the unscaled unmixing matrix, then we normalized its rows to
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yield W using

wij = w̃ij√∑
j w̃2

ij

. (B.4)

With this scale factor, the sources can be viewed as being measured by a
“virtual sensor” that measures in the same units, with the same scale, and
with the same amount of intrinsic noise as the real sensors. This gives rise
to “effective Ft/cm” units as above.

An alternative approach to scaling is to try to calculate the actual strength
of the source, for instance, the actual total energy emitted. This can be done
by fitting a physical source model (such as an equivalent current dipole) to
each component and scaling the rows of W such that the columns of Â match
the attenuations predicted by the estimated physical model. This approach
has the disadvantage of being dependent on the localization process, thus
giving rise to multiple scalings when there are multiple localization proce-
dures in use, or even when a single procedure produces multiple possible
localizations. Another disadvantage of this alternative is a failure to gener-
ate a scaling when the localization fails, as it would on noise components.

B.4 Energy/Variance Accounted For. A commonly used statistic is the
energy in a source, or the amount of variance it accounts for. The energy of
source i is

Ei =
∑

t

∑
j

(x̂(i)
j (t) − x̂(i)

j )2, (B.5)

where the mean is being subtracted to discount DC offsets, an important
consideration in MEG. Because the rows of the matrix W are normalized,
we can simplify this expression using equation B.3, yielding

Ei =
∑

t

(ŝi(t) − ŝi)
2, (B.6)

which is computationally more efficient. In this article, we gave the fraction
of variance accounted by the ith component as Ei/

∑
i Ei.

Acknowledgments

This work was supported by the National Foundation for Functional Brain
Imaging and NSF CAREER award 97-02-311, an equipment grant from Intel
corporation, the Albuquerque High Performance Computing Center, a gift
from George Cowan, and a gift from the NEC Research Institute. We thank
Ole Jensen for tips on packaging the separated components for the Neuro-
mag software, Mike Weisend for granting us access to his data, and Robert



Localization of ICA Components 1855

Christner for technical support. We also thank Lloyd Kaufman, Zhonglin
Liu, Claudia Tesche, Cheryl Aine, and Roland Lee for their comments and
discussion.

References

Aine, C. J., Huang, M., Christner, R., Stephen, J., Meyer, J., Silveri, J., & Weisend,
M. (1998). New developments in source localization algorithms: Clinical ex-
amples. International Journal of Psychophysiology, 30, 198.

Aine, C., Huang, M., Stephen, J., & Christner, R. (2000). Multistart algorithms for
MEG empirical data analysis reliably characterize locations and time courses
of multiple sources. Neuroimage, 12(2), 159–172.

Amari, S.-I., & Cichocki, A. (1998). Adaptive blind signal processing—neural
network approaches. Proceedings of the IEEE, 9, 2026–2048.

Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to
blind separation and blind deconvolution. Neural Computation, 7(6), 1129–
1159.

Belouchrani, A., Meraim, K. A., Cardoso, J.-F., & Moulines, E. (1993). Second-
order blind separation of correlated sources. In Proc. Int. Conf. on Digital Sig.
Proc. (pp. 346–351). Cyprus.

Cansino, S., Williamson, S. J., & Karron, D. (1994). Tonotopic organization of
human auditory association cortex. Brain Res., 663, 38–50.

Cao, J. T., Murata, N., Amari, S., Cichocki, A., Takeda, T., Endo, H., & Harada,
N. (2000). Single-trial magnetoencephalographic data decomposition and lo-
calization based on independent component analysis approach. IEICE Trans-
actions on Fundamentals of Electronics, Communications and Computer Sciences,
E83A(9), 1757–1766.

Cardoso, J.-F. (1994). On the performance of orthogonal source separation algo-
rithms. In European Signal Processing Conference (pp. 776–779). Edinburgh.

Cardoso, J.-F. (1998). Blind signal separation: Statistical principles. Proceedings
of the IEEE, 9(10), 2009–2025.

Cardoso, J.-F., & Souloumiac, A. (1996). Jacobi angles for simultaneous diag-
onalization. SIAM Journal of Matrix Analysis and Applications, 17(1), 161–
164.

Carter, S. A., Tang, A. C., Pearlmutter, B. A., Anderson, L. K., Aine, C. J., &
Christner, R. (2000). Co-activation of visual and auditory pathways induces
changes in the timing of evoked responses in populations of neurons: An
MEG study. Society for Neuroscience Abstracts, 26(9197), 1503.

Ermer, J. J., Mosher, J. C., Huang, M. X., & Leahy, R. M. (2000). Paired MEG
data set source localization using recursively applied and projected (RAP)
MUSIC. IEEE Transactions on Biomedical Engineering, 47(9), 1248–1260.

George, J. S., Aine, C. J., Mosher, J. C., Schmidt, D. M., Ranken, D. M., Schlitt,
H. A., Wood, C. C., Lewine, J. D., Sanders, J. A., & Belliveau, J. W. (1995). Map-
ping function in the human brain with magnetoencephalography, anatomical
magnetic resonance imaging, and functional magnetic resonance imaging. J.
Clin. Neurophysiol., 12, 406–431.



1856 Akaysha C. Tang et al.
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