
DetectingIntrusions UsingSystemCalls:
AlternativeData Models

�

ChristinaWarrender
StephanieForrest
BarakPearlmutter

Dept.of ComputerScience
Universityof New Mexico

Albuquerque,NM 87131-1386�
christy,forrest,bap� @cs.unm.edu

Abstract

Intrusiondetectionsystemsrelyona widevarietyofobserv-
abledatato distinguishbetweenlegitimateandillegitimate
activities. In this paper we studyone such observable—
sequencesof systemcalls into the kernel of an operat-
ing system.Using system-calldata setsgeneratedby sev-
eral differentprograms,wecompare theability of different
datamodelingmethodsto representnormalbehavioraccu-
ratelyandto recognizeintrusions.We compare thefollow-
ing methods:Simpleenumeration of observedsequences,
comparisonof relative frequenciesof different sequences,
a rule induction technique, and Hidden Markov Models
(HMMs). We discussthefactors affectingtheperformance
of each method,andconcludethat for this particular prob-
lem,weaker methodsthanHMMsare likelysufficient.

1. Intr oduction

In 1996,Forrestandothersintroducedasimpleintrusion
detectionmethodbasedonmonitoringthesystemcallsused
by active, privilegedprocesses[4]. Eachprocessis repre-
sentedby its trace—theorderedlist of systemcallsusedby
thatprocessfrom thebeginningof its executionto theend.
This work showedthata program’s normalbehavior could
be characterizedby local patternsin its traces,anddevia-
tionsfrom thesepatternscouldbeusedto identify security
violationsof anexecutingprocess.

Therearetwo importantcharacteristicsof theapproach
introducedin [4]. First, it identifiesa simple observable
(shortsequencesof systemcalls)thatdistinguishesbetween
�
In 1999IEEE Symposiumon SecurityandPrivacy, IEEE Computer

Societypp. 133-145(1999).

normal and intrusive behavior. This observable is much
simpler than earlier proposals,especiallythosebasedon
standardaudit packages,suchas SunOS’s BSM. Second,
the methodusedto analyze,or model, the sequencesis
alsomuchsimplerthanotherproposals.It recordsonly the
presenceor absenceof sequences;it doesnot computefre-
quenciesor distributions,or identify which sequencesare
mostimportant. Theadvantageof sucha simpleapproach
is computationalefficiency, but thequestionnaturallyarises
of whethermoreaccuratemodelsof thedatamight bepos-
sible.

Over the past several years, many statistically-based
learning techniqueshave beendeveloped. Several such
methodshave the potential for generatingmore accurate
and/ormorecompactmodelsof thesystem-calldata,andat
leasttwo groupshavepublishedresultsof theirown experi-
mentsonalternativemodelsappliedto systemcalls[13, 6].
Most of theavailablemethods,however, weredesignedfor
specificapplications,andeachhasits own idiosyncrasies.
Thegoalof our paperis to comparethesevariousmethods
assystematicallyaspossibleacrossa largerandmorereal-
istic suiteof datasetsthanhasbeenusedin thepast.

2. ChoosingApplicable Methods

Thereare many ways in which systemcall datacould
beusedto characterizenormalbehavior of programs,each
of which involvesbuilding or traininga modelusingtraces
of normal processes.1 In this section,we discussseveral
alternativeapproachesto this task,andselectfour for more
carefulinvestigation.Thelist of methodsdiscussedhereis

1The empirical approachtaken here ignoresthe family of methods
basedon formalspecificationof aprogram’s legalactivities,suchas[9].

by no meansexhaustive,but it doescover thosewe believe
to bemostappropriatefor ourproblem.

2.1. Enumerating Sequences

Themethodsdescribedin [4, 7] dependonly onenumer-
ating sequencesthat occurempirically in tracesof normal
behavior and subsequentlymonitoring for unknown pat-
terns. Two different methodsof enumerationwere tried,
eachof which definesa differentmodel,or generalization,
of the data. Therewasno statisticalanalysisof thesepat-
ternsin theearlierwork.

The original paper used lookaheadpairs [4]. The
databaseof normalpatternsconsistedof a list for eachsys-
temcall of thesystemcalls thatfollow it at a separationof
0, 1, 2, up to � systemcalls. This methodcanbe imple-
mentedefficiently, andit gave goodresultson theoriginal
(synthetic)datasets.

The later paperreportedthat contiguoussequencesof
somefixed length gave betterdiscriminationthan looka-
headpairs[7]. Thedatabaseof normalbehavior remained
compact,andcomputationalefficiency wasstill reasonable.
As theearliermethodwasknown astime-delayembedding
(tide), this methodwascalledsequencetime-delayembed-
ding (stide). In the comparisonsreportedbelow, we use
contiguoussequences.

2.2. Frequency-basedmethods

Frequency-basedmethodsmodelthefrequency distribu-
tionsof variousevents.For thesystem-callapplication,the
eventsareoccurrencesof eachpatternof systemcalls in a
sequence.

Oneexampleof a frequency-basedmethodis then-gram
vectorusedto classifytext documents[3]. Eachdocument
is representedby a vector that is a histogramof sequence
frequencies.Eachelementcorrespondsto onesequenceof
length � (calledann-gram), andthevalueof theelementis
thenormalizedfrequency with which the � -gramoccursin
thedocument.Eachhistogramvectorthenidentifiesapoint
in amultidimensionalspace,andsimilardocumentsareex-
pectedto havepointscloseto eachother. In [3], Damashek
usedthe dot productbetweentwo histogramvectorsas a
measureof their similarity, but he pointedout that other
measuresarepossible. A setof documentscanbe repre-
sentedby oneor morecentroidsof theset’s individual his-
tograms,anddot productscanbe taken with the resulting
centroidratherthanan individual histogramvector to test
for membershipin theset.

Adaptingthis methodto tracesof thesystemcallsused
by computerprogramsis straightforward.Oneor morecen-
troid vectorscould be usedas the model for normal,and
individual traceswhosevectorsweretoo distantfrom this

centroidwould be consideredanomalous. However, this
approachis not suitablefor on-line testingbecausetrace
vectorscannotbe evaluateduntil the programhastermi-
nated. It is alsodifficult to determinewhat sizevector to
use;thespaceof all possiblesequencesis muchtoo large,
andwe cannotguaranteethat the subsetof sequencesob-
served in tracesof normalbehavior is complete. Finally,
thecoarseclusteringof documentsin [3] doesnot suggest
sufficientprecisionto discriminatebetweennormalandin-
trusive tracesof thesameprogram.

Other frequency-basedmethodsexaminesequencesin-
dividually, making them suitablefor on-line use. Deter-
minationof whethera sequenceis likely to be anomalous
is basedon empiricallydeterminedfrequenciesfor thatse-
quence,but theapproachestakencanbequitedifferent,as
thenext two examplesillustrate.

HelmanandBhangooproposerankingeachsequenceby
comparinghow often the sequenceis known to occur in
normaltraceswith how often it is expectedto occurin in-
trusions[5]. Sequencesoccurringfrequentlyin intrusions
and/orinfrequentlyin normal tracesare consideredto be
more suspicious. Unfortunately, frequenciesof eachse-
quencein all possibleintrusionsare not known a priori .
We must,therefore,choosea frequency distribution for ab-
normalsequencesby assumption.Several possibilitiesfor
choosingthisdistributionarementionedin [5], thesimplest
of which is to assumethattheabnormaldistribution is uni-
form.

The Helman and Bhangoomethodmakes several as-
sumptionsthatareproblematicfor thesystem-callapplica-
tion. First, it assumesthatthedataareindependentandsta-
tionary. Althoughaseriesof completeprogramtracesmight
well bestationary(no orderedcorrelationsamongseparate
traces)[7], thesequenceswithin thetracearenot. Programs
oftenhavedifferentdistributionsof sequencesat thebegin-
ning of their executionthanthey do at the end,andthere
might be many suchdistinct regionswithin the trace[10].
Also,sequencesof systemcallsareclearlynot independent,
especiallywhenthesequencesoverlapasoursdo. A second
problemis thatof characterizingthe frequenciesof abnor-
malsequencesaccurately.

SRI takes a different approachin its Emeraldsystem
[8]. Ratherthanusingstaticdistributionsto definenormal
andabnormalbehavior, Emeraldcomparesshort-termfre-
quency distributions from new, unknown traceswith the
longer-term historical distribution. Prior knowledge (or
estimation)of the abnormalfrequenciesis not required.
Thelong-termdistributioncanbecontinuallyupdated,with
moreweightbeinggivento recentdata,sothatstationarity
is not required.Thisdoes,however, allow thepossibilityof
anintrudermaliciouslytrainingthesystemto shift its defi-
nition of normalcloserto thepatternproducedby intrusive
behavior.

Centralto both methodsis the ideathat raresequences
aresuspicious.Wechoseto implementaminimalversionof
a frequency-basedmethodthat would allow us to evaluate
thiscentralidea.

2.3. Data mining approaches

Dataminingapproachesaredesignedto determinewhat
featuresaremostimportantoutof a largecollectionof data.
In thecurrentproblem,theideais to discovera morecom-
pactdefinitionof normalthanthatobtainedby simply list-
ing all patternsoccurringin normal. Also, by identifying
just the main featuresof suchpatterns,the methodshould
be able to generalizeto includenormalpatternsthat were
missedin thetrainingdata.

Lee andothersusedthis approachto studya sampleof
systemcall data[13, 12]. They usedaprogramcalled“RIP-
PER” to characterizesequencesoccurringin normal data
by a smallersetof rulesthatcapturethecommonelements
in thosesequences.During monitoring,sequencesviolat-
ing thoserules are treatedas anomalies.Becausethe re-
sults publishedin [13] on syntheticdatawere promising,
wechosethismethodfor furthertesting.

2.4. Finite StateMachines

A machinelearningapproachto thisproblemwouldcon-
structa finite statemachineto recognizethe“language”of
theprogramtraces.Therearemany techniquesfor building
eitherdeterministicor probabilisticautomatafor this sort
of task,for example,[1, 16, 10]. Thesemethodsgenerally
determinethe frequencieswith which individual symbols
(systemcallsin ourcase)occur, conditionedonsomenum-
ber of previous symbols. Individual statesin the automa-
ton representtherecenthistoryof observedsymbols,while
transitionsoutof thestatesindicatebothwhichsymbolsare
likely to beproducednext andwhattheresultingstateof the
automatonwill be. Many, but not all, of thealgorithmsfor
building theseautomataarebasedon the assumptionthat
thedataarestationary.

A particularlypowerful finite statemachineis the hid-
denMarkov model,usedwidely in speechrecognitionand
alsoin DNA sequencemodeling[15, 14]. A hiddenMarkov
model(HMM) describesa doubly stochasticprocess.An
HMM’ sstatesrepresentsomeunobservableconditionof the
systembeingmodeled.In eachstate,thereis acertainprob-
ability of producingany of the observablesystemoutputs
anda separateprobability indicatingthe likely next states.
By having differentoutputprobabilitydistributionsin each
of thestates,andallowing thesystemto changestatesover
time,themodelis capableof representingnonstationaryse-
quences.

HMMs arecomputationallyexpensive, but very power-
ful. Thereis a greatdealof informationavailableon them,
andtheir usefulnesshasbeendemonstratedin many areas.
For thesereasons,we decidedto useHMMs as the finite
statemachinerepresentativefor ourexperiments.

3. Data Sets

The original studiesof the system-callapproachwere
conductedprimarily on syntheticdatasets2 [4, 13, 7, 6].
Althoughtheearlierstudiesonsyntheticdatasetsweresug-
gestive,they arenotnecessarilygoodpredictorsof how the
methodswill performin fieldedsystems.Consequently, we
haveuseda widervarietyof datasetsfor our currentstudy.
Theseinclude“li ve” normaldata(tracesof programscol-
lectedduring normalusageof a productioncomputersys-
tem),differentkindsof programs(e.g.,programsthatrunas
daemonsandthosethatdo not), programsthatvary widely
in their size andcomplexity, anddifferentkinds of intru-
sions(buffer overflows, symboliclink attacks,Trojanpro-
grams,and denial-of-service).We useprogramsthat run
with privilege (with oneexception,describedbelow), be-
causemisuseof theseprogramshasthe greatestpotential
for harmto the system. Table1 summarizesthe different
datasetsandtheprogramsfrom which they werecollected.
All of thesedatasetsarepubliclyavailableandcarefullyde-
scribedat http://www.cs.unm.edu/˜immsec/data-sets.html.
Intrusionsweretakenfrom public advisoriespostedon the
Internet.

Eachtraceis the list of systemcalls issuedby a single
processfrom thebeginningof its executionto theend.This
is asimpledefinition,but themeaningof aprocess,or trace,
varies from programto program. For someprograms,a
processcorrespondsto a singletask; for example,in lpr
eachprint job generatesaseparatetrace.In otherprograms,
multipleprocessesarerequiredto completeatask.In some,
suchasnamed, asingledaemonprocessrunscontinuously,
monitoring eventsor awaiting requests,and occasionally
spawningsubprocessesto handlecertaintasks.Evenin pro-
cessesthatarenotdaemons,thenumberof systemcallsper
tracevarieswidely, ascanbe seenby comparingthe data
for lpr andthatfor xlock.

Data for lpr were collectedat two universitiesunder
identicalconditions(OS,versionof lpr, etc.),but with dif-
ferentusersandnetwork configurations.TheUNM normal
datasetincludesfifteenmonthsof activity, while theMIT
datasetincludestwo weeks.Eachsetincludesa largenum-
berof normalprint jobsanda singlelprcp symboliclink
intrusionthat consistsof 1001print jobs. Detectionof an

2Synthetictracesarecollectedin productionenvironmentsby running
apreparedscript;theprogramoptionsarechosensolelyfor thepurposeof
exercisingtheprogram,andnot to meetany realuser’s requests.

Program Intrusions
Normaldata

available
Normaldata

usedfor training
Normaldata

usedfor testing
Numberof

traces
Numberof

traces
Numberof
systemcalls

Numberof
traces

Numberof
systemcalls

Numberof
traces

Numberof
systemcalls

MIT lpr 1001 2,703 2,926,304 415 568,733 1,645 1,553,768
UNM lpr 1001 4,298 2,027,468 390 329,154 2,823 1,325,670
named 2 27 9,230,572 8 677,340 12 7,690,572
xlock 2 72 16,937,816 72 778,661 1 16,000,000
login 9 12 8,894 12 8,894 – –
ps 26 24 6,144 24 6,144 – –
inetd 31 3 541 3 541 – –
stide 105 13,726 15,618,237 150 246,750 13,526 15,185,927
sendmail – 71,760 44,500,219 4,190 2,309,419 57,775 35,578,249

Table 1. Amount of data availab le for each program. “Normal data used for training” refers to models
built with sequence length six; sequence length ten models used more training data. The same test
data were used for both sequence lengths; this inc ludes all normal data not used for training either
set of models.

anomalyin any of these1001tracesis consideredsuccess-
ful detectionof theintrusion.

Thenamed normaldataconsistof asingledaemontrace
andtracesof its subprocesses,collectedfor onemonth.The
intrusionagainstnamed is a buffer overflow; we usedtwo
sampletracesof this intrusion.

Datafor xlock include71synthetictraces,andasingle
live trace. The live trace,however, is very long; xlock
generatesa hugenumberof systemcalls as it continually
updatesthe user’s screenand it was left running for two
daysto collect thesedata. The intrusionusedhereis also
a buffer overflow. As with named, we usedtwo sample
tracesof thesameintrusion.

Thelogin andps normaldatasetsarerelativelysmall.
Thesearesimplerprograms,andlittle variationin normal
behavior is expectedfrom additionaltraces.Thesmalldata
set,however, meansthat thereis insufficient datafor thor-
oughanalysisof falsepositives.

For both login and ps, we usedTrojan intrusions,
which allow unauthorizedaccessto the systemthrougha
built in “back-door.” A numberof traceshave beencol-
lectedfrom eachTrojanprogram.Someof theTrojanpro-
gram traceswere collectedfrom actual Trojan programs
installedduring a live intrusion. Thesetracesareeasyto
detectbecausethe Trojan programwasa differentversion
from the programit replaced.Other tracesarefor Trojan
programswe createddirectly from the installed(normal)
versionof the program. Someof the tracescorrespondto
useof thebackdoor to breakinto thesystem,while others
arefrom ordinaryusersloggingin to theTrojanedprogram
normally(without usingthebackdoor). Ideally, we would
like to detectthe presenceof Trojan codewhetheror not
it is currentlybeingusedfor unauthorizedaccess,so each

traceis treatedasa separateexampleof anintrusion.How-
ever, this is a stringenttest,astheforeigncodeis not being
executed.

Theinetd programis typically startedasa foreground
process,which initiatesa daemonprocessto run in back-
groundandthenexits. The daemonprocessin turn, initi-
ateschild processeswhich performa fixedsetof initializa-
tion stepsandthenexecutesomeotherprogram.Child pro-
cessesare,therefore,verynearlyidentical.Thenormaldata
for inetd includea traceof thestartupprocess,a daemon
process,anda representative child process.The intrusion
usedagainstinetd is a denial-of-serviceattackthat ties
upnetwork connectionresources.As theattackprogresses,
moreof thesystemcallsrequestingresourcesreturnabnor-
mally and are re-issued. The intrusion datacollectedin-
cludeastartupprocess,adaemonprocess,andseveralchild
processes,but only thedaemonprocessis expectedto show
any deviation from normalbehavior.

A seconddenial-of-serviceattackwe testedties up all
the memoryavailableon a system. This affectsany run-
ning programthat requestsmemoryduring the denial-of-
serviceattack. In this onecase,we departedfrom our pol-
icy of monitoring only privileged processes,and instead
tracedtheanalysisprogramstide (whichwasprocessing
thesendmail data).Thenormalandintrusiondatawere
collectedwhile stide wasprocessingthe samedata,but
thelatterwasinterruptedby thedenial-of-serviceattack.

The final data set, sendmail, consistsonly of nor-
mal databecausethis versionof sendmail running on
a productionmail server wasnot vulnerableto any known
sendmail intrusions.However, we wereableto collecta
very largesetof livenormaldata,andusethis for falsepos-
itive analysis. Note that thesedatawerecollectedfrom a

differentversionof sendmail thanthatusedin ourearlier
papers.

4. Experimental Design

Our objective is to compare several different data-
modelingmethodsusing data from several different pro-
grams,therebygettinga betteroverall pictureof their rela-
tive merits. For accurateintrusiondetection,we mustcor-
rectlyclassifybothintrusionsandnormaldata.Errorsin the
first category, whereintrusionsarenot identified,arecalled
falsenegatives. Errorsin the secondcategory, wherenor-
mal dataareidentifiedasanomalous,arecalledfalseposi-
tives. We wish to minimizebothkindsof errors,or equiva-
lently, maximizetruepositivesandminimizefalsepositives.
We donotattemptto measureperformancein termsof sys-
temusage,althoughwedomakesomegeneralobservations
aboutcomputationaleffort.

For mostof ourdatasets,wehaveonly asingleintrusion
script,andeachmethodhasasinglethresholdabovewhich
that intrusionis detectedandbelow which it is missed.To
get a betterpictureof the gradualtrade-off betweenfalse
positivesandfalsenegativesthat often occurswith multi-
ple intrusions,we combineresultsacrossall availablepro-
grams. By using the compositeresults,we also can see
which methodscan be usedon multiple datasetswith a
singlesetof parametersandwhich requirehand-tuning.

However, using several programsalso complicatesthe
designof theexperiments.First,wewould like to usecom-
parableamountsof datafor eachprogramin building our
modelsof normal. Sincetheprogramsvary in complexity
anda tracedoesnot have a similar meaningin eachpro-
gram,simply choosinga fixednumberof tracesor system
calls to include would not be a good approach. Second,
weneedto definea consistentmeasurefor comparingfalse
positives.

Figure 1 shows the numberof uniquesequencesas a
function of the total numberof sequencesseenfor oneof
our datasets. The x-axis representsthe sequencesseenin
chronologicalorder, from tracesaddedin theorderin which
they werecollected.At first, almosteverysequenceis new,
but graduallythenumberof new sequencesdropsoff. One
wayof establishingaconsistentmeasureof how muchtrain-
ing datato useacrossseveralprogramsis to seta targetfor
the slopeof this growth curve. Oncethe rateof encoun-
tering new sequencesdropsbelow somepresetvalue,we
saywe have enoughdatawith which to build our modelof
normal.

Unfortunately, the growth curves for our datasetsare
notverysmooth.Severaltracesmightpasswith nonew se-
quences,andthenseveral new sequencesareencountered
closetogether. This is not surprising,asa changein sys-
temcall orderaffectingonesequencegenerallyaffectsthe

0� 500000 1000000� 1500000�
Total number of sequences�

0

200

400

600

800

1000

N
um

be
r

of
 u

ni
qu

e
se

qu
en

ce
s

�

Figure 1. Typical database growth cur ve. The
graph sho ws how the size of the normal
database grows as traces are added chrono-
logicall y.

nearbysequencesas well. We consideredseveral meth-
odsfor smoothingthis curve so asto get a betterestimate
of the slope, and eventually settledon the following ap-
proach. Figure 2 shows several different versionsof the
growth curve for the samedata. The pool of normaldata
tracesis treatedasa loop, wherethefirst tracefollows the
lasttrace.For eachcurveshown in figure2,adifferentstart-
ing point on this loop waschosenrandomly, andthenthe
traceswerereadin order from that point. This allows us
to examinevariationsin the growth curve without reduc-
ing theamountof datausedor disruptingthechronological
orderingof traces.

0� 500000 1000000� 1500000�
Total number of sequences

0

200

400

600

800

1000

N
um

be
r

of
 u

ni
qu

e
se

qu
en

ce
s

�

Figure 2. Alternate database growth cur ves
for the same data used in Figure 1. Light
lines sho w standar d growth cur ves for diff er-
ent star ting points in the training data; the
dark line sho ws the mean.

The averageof theseindividual growth curves, shown

asthedarker line in figure2, givesa smootherestimateof
therateat which thedatabasegrows. This is not a precise
measure,but a roughway to estimatehow much training
datashouldbeused.For our experiments,we selectedthe
first pointon theaveragecurveatwhich thelocalslopewas
lessthanonenew sequenceper10traces,andremainedthat
way for at least10 traces.We usedeachprogram’saverage
tracelengthfor this estimate,exceptin thosecaseswhere
a single long traceskewed the average. For xlock, we
averagedthe lengthsof only the synthetictraces,and for
named, we usedthe mediantracelength. We chosetwo
groupsof trainingtracesin this fashion,onefor sequences
of lengthsix, andanotherfor sequencesof lengthten. All
datanotincludedin thesecond,largertrainingsetwereused
for testing.Table1 shows how muchtrainingdatawe used
for eachprogramfor sequencelengthsix.

On the testingside, falsepositivesweremeasureddif-
ferently from truepositives. To detectan intrusion,we re-
quireonly thattheanomalysignal(describedbelow) exceed
a presetthresholdat somepointduringtheintrusion.How-
ever, makinga singledeterminationasto whethera normal
traceappearsanomalousor not is insufficient,especiallyfor
very long traces. If a programis runningfor several days
or more,eachtime that it is flaggedasanomalousmustbe
countedseparately. The simplestway to measurethis is
to count individual decisions.The false-positive ratethen
is the percentageof decisionsin which normaldatawere
flaggedasanomalous.Note that the sameapproachcan-
not be usedfor measuringtrue positives. Intrusiontraces
generallyresemblenormaltracesin largepart,andeachin-
dividualsequencewithin anintrusivetraceis morelikely to
benormalthannot.

5. Building modelsof normal behavior

Wemodeledthenormalbehavior of eachof thedatasets
describedin Section3 usingeachof thefour methodscho-
senearlier. This processtook muchlongerfor HMMs than
for theothermethods.On our largestdataset,HMM train-
ing took approximatelytwo months,while theothermeth-
odstookafew hourseach.For all but thesmallestdatasets,
HMM training timesweremeasuredin days,ascompared
to minutesfor the othermethods.The subsectionsbelow
explain thedetailsbehindeachmethod.

5.1. sequencetime-delayembedding(stide)

In sequencetime-delayembedding(stide), a profile of
normalbehavior is built by enumeratingall unique,contigu-
oussequencesof a predetermined,fixed length � that oc-
cur in thetrainingdata.We ranexperimentswith sequence
lengthsof six and ten. For a sequencelength of six, we
slidea window of lengthsix acrosseachtrace,onesystem

call at a time, addingeachuniquesequenceto the normal
database.The sequencesarestoredastreesto save space
andto speedup comparisons.Building sucha databasere-
quiresonly a singlepassthroughthe data,unlike someof
themethodsdescribedbelow.

At testingtime, sequencesfrom the test tracearecom-
paredto thosein the normaldatabase.Any sequencenot
foundin thedatabaseis calleda mismatch. Any individual
mismatchcouldindicateanomalousbehavior, or it couldbe
asequencethatwasnotincludedin thenormaltrainingdata.

To date,all of therealintrusionswehavestudiedproduce
anomaloussequencesin temporallylocal clusters.This is
convenientfor definingan on-line measureof anomalous
activity. We deriveouron-linemeasure,or anomalysignal,
from the numberof mismatchesoccurringin a temporally
local region, calleda locality frame. Thedatareportedbe-
low useda locality frameof 20 systemcalls. At eachpoint
in our test trace,we checkwhetherthe currentsequence
is a mismatch,andkeeptrack of how many of the last 20
sequenceswere mismatches.This Locality FrameCount
(LFC) givesusour anomalysignal. (A somewhatdifferent
approachwas taken in [7], wherethe measureof anoma-
lous behavior was basedon Hammingdistancesbetween
unknown sequencesandtheir closestmatchin the normal
database.)

We thenseta thresholdon theLFC, below which traces
arestill consideredto benormal.Any timetheLFC reaches
or exceedsthethreshold,ananomalyis recorded.ThisLFC
thresholdis the primary sensitivity parameterusedin the
experimentsdescribedbelow; it rangesfrom 1 to 20. Lower
LFCstendto catchmoreintrusionsandalsogivemorefalse
positives,higherLFCstendto producefewer trueandfalse
positives.

5.2. stidewith fr equencythr eshold(t-stide)

A simpleadditionto stideallows us to testthe premise
that rare sequencesaresuspicious. For eachsequencein
the database,we keeptrack of how often it hasbeenseen
in the training data. Onceall the training datahave been
processed,we thendetermineeachsequence’s overall fre-
quency. For our experiments,“rare” wasdefinedasany se-
quenceaccountingfor lessthan0.001%of thenormaltrain-
ing data.The“t” in “t-stide” representstheadditionof this
thresholdonsequencefrequencies.

Sequencesfrom testtracesarecomparedto thosein the
database,as for stide. Raresequences,as well as those
not includedin the database,are countedas mismatches.
Thesemismatchesareaggregatedinto locality framecounts
asdescribedearlier. Again, thethresholdon locality frame
countsis theprimarysensitivity parameter.

5.3. RIPPER

RIPPER—RepeatedIncrementalPruningto ProduceEr-
ror Reduction—isa rule learning systemdeveloped by
William Cohen[2]. It, like otherrule learningsystems,is
typically usedfor classificationproblems.Trainingsamples
consistof asetof attributesdescribingtheobjectto beclas-
sified,anda targetclassto which theobjectbelongs.Given
enoughsuchexamples,RIPPERextractsrulesof theform:

classA:-attrib1= x, attrib5= y.

classB:-attrib2= z.

classC:-true.

In this example,classA is chosenif attributes1 and5 are
x andy, respectively; classB is chosenif attribute 2 is z;
andclassC is thedefaultclass.Conditionscanalsospecify
thatanattributenot equala certainvalue. (For othertypes
of data,moreconditionsarepossible.)Multiple conditions
arealwaystakento meanthatall conditionsmusthold.

For the intrusiondetectionproblem,suchclassification
is usefulonly if onehasa completesetof examplesof the
abnormalclass(es)with which to train thesystem.We are
primarily interestedin theapplicationto anomalydetection,
wherewe do not have bothpositiveandnegative instances.
Leeandothers[13, 12] adaptedRIPPERto anomalydetec-
tion by usingit to learnrulesto predictsystemcallswithin
shortsequencesof programtraces.

For eachprogram,weuseda list of all uniquesequences
occurring in that programto createthe RIPPERtraining
samples.Eachsequencewas turnedinto a RIPPERsam-
pleby treatingall systemcallsexceptthelastin asequence
asattributes,andthe lastasthe targetclass.(This requires
renamingthe last systemcall, asRIPPERwill not accept
classesthat look like attributes.) Similar attribute/target
pairs were createdfor test traces,but in that caseall se-
quenceswere used,not just a sampleof eachuniquese-
quence.

RIPPERhasa difficult time learningrules for classes
aboutwhich thereis notenoughinformation,suchasa sys-
tem call that only occursat the end of a sequenceonce
[11]. Becausethefrequenciesof eachsequencearenot be-
ing recorded,simpleduplicationof eachsequence	 timesis
effective. We replicatedeachtrainingsampletwelve times
to createthetrainingfile, asdid LeeandStolfo in [12].

RIPPER takes these training samplesand forms a
hypothesis—alist of rules to describenormal sequences.
For eachrule,a violation scoreis establishedfrom theper-
centageof timesthat the rule wascorrectlyappliedin the
training data. For a rule whoseconditionswere met

times in the training dataand whosepredictionwas cor-
rectfor � of thosetimes,thepenaltyfor violating thatrule

is ����
���� . Lee andothersusedthe averageof thesevi-
olation scoresto rank a trace[12], but sucha measureis
inappropriatefor on-linetesting.Wefirst usedamovingav-
erageof theseviolation scoresover the locality frame,but
found that gave excessive falsepositives. Instead,we call
eachsequencethat violatesa high-confidencerule a mis-
match,equivalent to the stide mismatchesdescribedear-
lier. Thesemismatchesthencanbe aggregatedinto local-
ity frame counts,also describedearlier. We chosehigh-
confidenceto meanthoseruleswith violationscoresgreater
than80.

5.4. Hidden Mark ov Model

StandardHMMs have a fixed numberof states,so one
mustdecideon thesizeof themodelbeforetraining. Pre-
liminary experimentsshowedusthata goodchoicefor our
applicationwasto choosea numberof statesroughly cor-
respondingto the numberof uniquesystemcalls usedby
theprogram.Most of our testprogramsuseanalphabetof
about40 systemcalls,hence40-stateHMMs wereusedin
mostcases.Weuseda20-stateHMM for ps andstide, a
35-stateHMM for inetd, anda60-stateHMM for send-
mail. The statesare fully connected;transitionsare al-
lowedfrom any stateto any otherstate.For eachstatethen,
weneedto storetheprobabilitiesassociatedwith transitions
toeachotherstate,andtheprobabilitiesassociatedwith pro-
ducing eachsystemcall. For a programusing � system
calls, and hencea modelof � states,this meansroughly� ��� values.

In mostcases,transitionandsymbolprobabilitieswere
initialized randomly, and then trained using the Baum-
Welch algorithmasdescribedin [14]. Occasionally, how-
ever, prior knowledgeis usefulin performingtheinitializa-
tion. This wasthecasewith thelpr datasets.A primary
differencebetweenlpr tracesis in the lengthof the doc-
umentbeingprinted. This is reflectedin the tracesasthe
numberof read-write pairs. We found that randomly
initializedHMMs devotedmostof thestatesandagreatdeal
of training time to modelingthedifferentfrequency distri-
butionsof this particularsubsequence.As a result, these
HMMs were lesslikely to recognizethe intrusion. How-
ever, whenthemodelwasinitialized with a predetermined
read stateandwrite statearrangedin a loop, therestof
the modelstateswereavailableto representotherpartsof
thetracesandaccuracy improved.We assignedlargeprob-
abilities to the desiredtransitionsandoutputsystemcalls
for theread andwrite states,andlow probabilitiesfor
thealternatives. Transitionandoutputprobabilitiesfor the
otherstateswererandomized.

During training, the probabilitieswere iteratively ad-
justedto increasethe likelihoodthat the automatonwould
producethetracesin thetrainingset.Severalpassesthrough

the training datawere required. To avoid over-fitting the
trainingdata,the likelihoodof themodelproducinga sec-
ondsetof normaltraces(not usedin training)wasperiod-
ically measured.Whenthis secondlikelihoodstoppedim-
proving, trainingwasterminated.

As mentionedearlier, training an HMM is expensive.
Calculationsfor eachtracein eachpassthroughthe train-
ing datatake ����������� , where� is thelengthof thetracein
systemcalls(seeTable1),and � is thenumberof states(and
symbols).Also,storagerequirementsarehigh. The“trellis”
of intermediatevaluesthatmustbe keptwhile performing
the calculationsfor a particulartracerequires� � � �"!#���
floating point values. For our longer traces,thesevalues
werewritten to a memorymappedbinaryfile.

Fortunately, testingis moreefficient. A standardway to
testanHMM is to computethe likelihoodthat it will pro-
ducedatanot in theoriginal trainingset.We,however, used
a simplermeasurethat (unlike thestandardmethod)is not
sensitive to tracelengthandis bettersuitedto on-lineuse.
We usethegraphunderlyingtheHMM asa nondetermin-
istic finite automaton.We “read” a traceonesystemcall
at a time, trackingwhatstatetransitionsandoutputswould
berequiredof theHMM to producethatsystemcall. If the
HMM is a goodmodelof theprogram,thennormaltraces
shouldrequireonly likely transitionsandoutputs,while in-
trusive tracesshouldhaveoneor moresystemcallsthatre-
quireunusualstatetransitionsand/orsymboloutputs.

At agiventime $, thereis a list of currentpossiblestates.
Choosingonly the most likely statefor any singlesystem
call might not beconsistentwith thebestpaththroughthe
HMM for asequenceof systemcalls,sowekeeptrackof all
possiblepaths.Thresholdsaresetfor “normal” statetransi-
tion andoutputprobabilities.Then,if we encountera sys-
temcall in the tracewhich couldonly have beenproduced
using below-thresholdtransitionsor outputs,it is flagged
asa mismatch.Note that we could have usedthe LFC to
aggregatethesemismatches,but HMM anomaliesareusu-
ally not temporallyclumped,so we thought it more fair
to count individual mismatches.For our experiments,the
samethresholdwasusedfor bothstatetransitionsandout-
puts.Thisparameterwastheprimarysensitivity parameter,
with thresholdsvaryingfrom 0.01to 0.0000001.Notethat
HMMs aremakinganomalydecisionsat eachsystemcall,
ratherthanonsequencesasin theotherthreemethods.

Thetimeto checkeachsystemcall dependsonthemodel
sizeandthe size % of the currentlist of valid states.The
latter tendsto stayvery small with normal traces,but can
includeup to all � statesafterananomalyhasbeenidenti-
fied. For eachcurrentvalid state,our implementationof the
programtakesO(�) to decidewhetherthereis ananomaly
or not. If %'&(� , this meansO(���) to processone sys-
temcall. Thesetimescouldbeimprovedby convertingthe
modelto a betterrepresentationof theautomatononcethe

testingprobabilitythresholdsareknown.

6. Results

We testedeachof the four datamodelingmethodson
eachof thedatasets(tracesof Unix programs)atseveraldif-
ferentsensitivity thresholds.Falsepositivesarereportedfor
normaldatanot usedduringtraining,andtruepositivesare
reportedfor tracesof anomalousbehavior. We first present
theoverall results,andthendiscussaccuracy on individual
datasets.

To geta pictureof how well thedetectionmethodsper-
formonavarietyof data,wefirst averagedtheresultsacross
all the datasets. Figure3 shows theseaverageresultsfor
eachcombinationof datamodelingmethodand sensitiv-
ity threshold. A different symbol is usedto denoteeach
method,andeachpoint shows performanceat a particular
threshold.For HMMs, we distinguishbetweenresultswith
randomly-initializedHMMs andthoseusingHMMs initial-
izedto includehumanknowledgeof themodeledprogram.

In Figure3, the y-axis representsoverall ability to de-
tectanomalies.As mentionedearlier, any above-threshold
signalanywherein the intrusive trace(s)countsascorrect
detectionof the intrusion. Thex-axis representsfalsepos-
itives,measuredon anindividualdecisionbasisratherthan
by traces.Falsepositivesareshown asafractionof thetotal
numberof sequences(or systemcalls) in a traceof normal
behavior, andthereforecanrangefrom 0 to 1. Thefigure,
however, shows only the region from 0 to 0.001which is
of primary interest. As a very rough estimate,tracesare
often on the orderof a thousandsystemcalls long. Iden-
tifying one in a thousandsequences(or systemcalls, for
HMMs) asanomalousis roughly equivalentto identifying
eachtrace as anomalous. Of course,this doesnot hold
everywhere,becauseof thevastdifferencesin tracesmen-
tionedearlier. However, it doessuggestthatfor practicality,
false-positiveratesshouldbewell below 0.001.Perfectper-
formancewouldbecorrectdetectionof all intrusionsandno
falsepositives,representedby pointsin theupperleft corner
of thefigure.

For many of the datasets,the individual true-positive
ratewaseitherone,if theintrusion(s)wassuccessfullyde-
tected,or zero, becausethereare only two datasetsfor
which someintrusion tracesare harderto recognizethan
others.Thismakesthetrue-positiveaverageasimplerepre-
sentationof how many intrusionsaredetected.Thenormal
data,however, aremorevaried. With differencesbetween
falsepositivesthatspanseveralordersof magnitude,theav-
erageis heavily influencedby the worst results.Thus,we
alsoshow the medianscoresin the insetof figure3. Note
thatthescalefor falsepositivesis muchsmalleron thisfig-
ure,asthemedianis significantlylowerthantheaveragefor
all methodsandthresholds.(t-stideresultsdo not show up

0.0000) 0.0005) 0.0010)
average false positives*

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

tr
ue

 p
os

iti
ve

s

+
stide
tstide
RIPPER
HMM
HMM+

0.000000, 0.000005, 0.000010,
median false positives-

0.0

0.2

0.4

0.6

0.8

1.0

m
ed

ia
n

tr
ue

 p
os

iti
ve

s

.

Figure 3. Composite results for each method on all data sets, sequence length 6. Each point rep-
resents perf ormance at a par ticular threshold. True-positive values are the fraction of intrusions
identified. For the sequence-based methods, false positives are the fraction of sequences giving
mismatc hes at or above the specified locality frame count threshold. For HMMs, false positives
are the fraction of system calls corresponding to state transitions or outputs belo w the specified
probability threshold. Points labeled “HMM” are for onl y randoml y-initializ ed HMMs, while those for
“HMM+” use the speciall y-initializ ed HMMs designed to handle lpr data. No t-stide points appear in
the median plot because the false positives are off the scale . Results for four HMM thresholds all
map to the single median point sho wn.

on thisnew scale;althought-stidemedianresultsarelower
thantheircorrespondingmeans,they arenotaslow asthose
for theothermethods).Many of plottedpointsonthey-axis
of the inset (mediantrue positives)are1.0, becausestide
andbothHMM methodscorrectlydetecta majority of the
intrusion tracesat all thresholds. RIPPER’s true positive
rates,however, drop off graduallywith increasingthresh-
old, while its falsepositivesdroprapidly; this accountsfor
thepointsrunningdown they-axis.

The compositepicture shown in figure 3 gives only a
rough outline of the data. Figure 4 shows the relation-
shipbetweenthresholdsandtrueor falsepositivesin more
detail. As the sensitivity thresholdis relaxed, fewer se-
quences(or systemcalls)areidentifiedasanomalousin all
traces,affectingbothtrueandfalsepositives.“Relaxed” for
thesequence-basedmethodsmeansanincreasein theLFC
neededto flagananomaly, while it meansa decreasein the
minimumprobabilityfor anHMM togenerateanormalsys-
temcall. TheRIPPERcurvesaresteeperbecauseRIPPER

rarely generateshigh LFCs. BecauseRIPPER’s rulesde-
pendonly onafew of thesystemcallsin asequence,notall
sequencesin ananomalouspartof thetraceareclassifiedas
anomalous.

We canusetheresultsshown in figure4 to choosegood
thresholdsfor eachmethod.Thedefinitionof “good,” how-
ever, is not fixed. On onesystemit maybemoreimportant
to maximizetrue positives,while on another, minimizing
falsepositives may be key. For the moment,we choose
“good” to meanan averagetrue-positive rateabove 95%.
HMMs, stideandt-stideall have at leastonethresholdat
which theaveragetrue-positiverateis 96.9%,missingonly
two of thelogin intrusiontraces.RIPPER’sclosestmatch
is atrue-positiverateof 95.3%,missingthreeof thelogin
intrusiontraces.Using thesethresholds,we now turn to a
comparisonof thecorrespondingfalse-positiverates.

Figure5 shows the false-positive rate for eachmethod
on eachof the six normal testsets,using thresholdscho-
senasdescribedabove. Valuesfor onedatasetvary over

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

tr
ue

 p
os

iti
ve

s

.

0, 5
/

10, 15
/

20,
threshold-

0.0000

0.0005

0.0010

av
er

ag
e

fa
ls

e
po

si
tiv

es

0

stide1

0, 5
/

10, 15
/

20,
threshold-
t-stide2

0, 5
/

10, 15
/

20,
threshold-

RIPPER3

0, 0, 0, 0, 0, 0,
threshold-
HMM4

Figure 4. Average true and false positives versus threshold for each method, sequence length 6.
HMM results are for randoml y-initializ ed HMMs onl y.

ordersof magnitude(note the logarithmicscaleon the y-
axis). Thereis somecorrelationbetweenlong tracesand
low false-positive rates(ignoring the named daemonfor
themoment),but thenumberof misclassifiednormaltraces
still varieswidely betweenprograms.More importantthan
tracelengtharethe complexity of a programandthe vari-
ability in its usage.Thesendmail programis largerand
morecomplicatedthantheotherprograms,producingtraces
with a largervarietyof systemcallsandsequencepatterns,
so it is not surprisingthat it is moredifficult to model. By
contrast,xlock andstide aremuchsimplerprograms,
which do not interactwith a network. They alsogave our
leastrealisticdatasets—xlock becausethetestdatacome
from just oneabnormallylong trace,andstide because
it is an applicationprogram. The two lpr datasetswere
producedby the sameprogram,but the UNM falseposi-
tivesarehigherfor all methods.We speculatethatbecause
theUNM datawerecollectedovera muchlongerperiodof
time, they reflectmorechangesin network configurations
anduserbehavior thantheMIT data.

It is possiblethat we simply did not useenoughtrain-
ing datato characterizethe more complex datasetsade-
quately, eventhoughour trainingsetsizesweredetermined
by the variability of systemcall patterns(seeSection4).
Thesendmail trainingsetwaslargerthanany otherpro-
gram’s trainingset,andthelpr trainingsetsuseda larger
percentageof theavailabledata.Yetsendmail andUNM
lpr hadtheworstfalse-positiverates.

Resultsacrossmodelingmethodsfor a particulardata

setaremoresimilarthanresultsfor thesamemethodacross
differentdatasets. Although it is clearthat t-stideconsis-
tently performsbelow theothermethods,noneof theother
methodsis a clearwinner. We would needto betterunder-
standwhy false-positive ratesvary so muchbetweendata
setsbeforewe could conclusively identify onemethodas
best. That is, our datasuggestthat thereis no singlebest
choicefor all thedatasets.However, noneof themethods
(otherthant-stide)wouldbea badchoice.

All of the resultspresentedin figures3, 4, and5 were
computedusingasequencelength(window size)of six,and
the correspondingchoiceof training data. Resultsfor se-
quencelengthten arequalitatively similar, but therearea
few pointsworth noting. We expectedthe resultsfor the
sequence-basedmethodsto besimilar for thetwo sequence
lengthsbecausewe chosethesizeof thetrainingsetbased
on the sequencelength. The training set chosenfor se-
quencelengthten wasmuchlarger thanthat for sequence
lengthsix, reflectingthefactthattherearemany morepos-
sible sequencesof lengthten thanof lengthsix. RIPPER
andstideaverageresultsappearto beslightly betterfor se-
quencelength six, despitetraining on lessdata,possibly
becausethe smallersequencesallow bettergeneralization.
However, HMMs do not dependon the sequencelength;
HMM accuracy wasbetterfor mostdatasetson the larger
trainingset.

However, thesetrendsin the averagebehavior do not
hold for all programs.Eachmethodhassomeprogramsfor
whichsequencelengthsix falsepositiveratesarelowerand

MIT lpr UNM lpr named xlock5 stide sendmail1
1E-07

1E-06

1E-05

1E-04

0.001

F
al

se
 p

os
iti

ve
s

6 stide
t-stide
RIPPER
HMM

Figure 5. False-positive rates for each of six data sets, sequence length six. stide threshold: 6, t-stide
threshold: 4, RIPPER threshold 2, HMM threshold = 0.001. Note that the RIPPER true-positive rate
at this threshold is is slightl y lower than those of the other methods. False-positive rates are sho wn
on a logarithmic scale .

othersfor which they arehigher. This is likely dueto the
factthatourresultsdependsomewhatonwhichtracesor se-
quencesareincludedin thetrainingset.A differentchoice
of trainingdata,evenif theamountof datawerethesame,
would yield different test resultsin somecases.We have
not attemptedto measurethis variationor obtainan error
estimatefor thefalsepositives.Thecomparisonsmadehere
aresuggestive,ratherthantestsof statisticalsignificance.

7. Discussion

Intrusiondetectionis animportantandactive areaof re-
search. Variousresearchgroupshave suggestedmethods
that look promisingon at leastonesetof data. But in or-
derto choosefrom amongthesedifferentmethods,weneed
goodcomparisonsbetweenthemona varietyof data.Such
comparisonsarenot easy. Differencesin how themethods
work andlargevariationsin the amountandtypesof data
bothcomplicatedourstudy.

Onesuchdifferenceis in the way anomalysignalsare
generated.The sequence-basedmethodstend to produce
multiple mismatcheseven for a single misplacedsystem
call, becausethat systemcall affects multiple sequences.
BecauseHMMs, as usedhere, check only a single sys-
tem call at a time, they automaticallyproducefewer mis-
matches. This biasesthe resultsin favor of HMMs. An
alternativethatseemsmorefair at first is to comparepeaks.
A traceregion wherelocality framecountsareall above 0
shows up asa peakin a graphof the anomalysignalover
time. Sucha peakmight be equivalentto a singleHMM
anomaly. But the size of the locality frame might cause

multipleanomaliesto belumpedtogetherin onesuchpeak.
Perhapscontiguousmismatcheswould be a betterdefini-
tion of peak. However, in either case,it is impossibleto
calculatea percentagefor falsepositives,becausethereis
no notionof how many suchpeaksarepossiblein a given
trace.

Regardlessof how the false positives are calculated,
moretestdatawould improveourconfidencein theresults.
Althoughwehavecollecteddatafor aspectrumof different
kindsof programsandintrusions,we still have a relatively
smallnumberof datasets.Eachindividual datasetcarries
too muchweight in the final outcome,andaddingresults
for onemoredatasetmight changethe compositeresults
enoughto favor othermethods.

Studiessuchasourscanalwaysbeconductedmorethor-
oughly. As with collectingdata,therearenopredetermined
stoppingcriteria. Eachmodelingmethodhasa numberof
parametersthataffect anomalysignals,but only a few rep-
resentative variationswereinvestigatedhere.Also, thereis
a randomelementto both RIPPERandHMMs, so results
for thesemethodsshouldideally beaveragedovermultiple
trials.

For these reasons,we cannot definitively determine
whichmethodis best.However, wecanmakesomegeneral
statementsaboutwhich propertiesof thedatawerehelpful
or harmfulfor eachof themethods.

We purposelychosemethodsthatcouldhandlediscrete
data,but the large numberof distinct systemcalls usedis
a problemfor somemethods. In training an HMM, the
time for eachpassis roughlyproportionalto thesquareof
thealphabetsize(numberof differentsystemcalls). More

complex programsusingmoresystemcalls requiresignifi-
cantly longertraining times. On the testingside,eachde-
cision in the currentimplementationrequiresa numberof
testsdirectly proportionalto thenumberof distinctsystem
calls. By contrast,in stideandt-stide,the numberof sys-
temcallsis only anindirectfactorin trainingandtesttimes,
becauseof the way the dataare stored. The searchtime
for a sequencein the databasedependson the numberof
branchesin the sequencetrees. Although the numberof
possiblebranchesat eachlevel is equalto the numberof
systemcalls,thenumberencounteredin practiceis signifi-
cantlyfewer. Thesemethodsscaledramaticallybetterwith
thenumberof systemcallsused.

Scalingwith thelengthof thetracesis anotherfactor. All
of themethodshavetrainingandtesttimesthatarelinearin
the length of the trace. However, the training algorithms
for HMMs andRIPPERmake multiple passesthroughthe
trainingdata,whereasstideandt-stiderequireonly asingle
passto build their normaldatabases.Also, as mentioned
earlier, HMMs muststoreintermediatedatawhile training,
with thenumberof floatingpoint valuesproportionalto the
tracelengthmultiplied by the numberof states.For long
traces,this is veryexpensive.

Thenumberof uniquesequencesin a datasetis not di-
rectly relatedto thetracelength.In fact,longertracesoften
repeata smallnumberof sequencesmany times. As men-
tionedearlier, the primary differencebetweenlpr traces
is the numberof read-write pairs. Also, in the long
xlock live trace,thebulk of thedataconsistsof thesame
fivesystemcallsrepeatedoverandover. This is onereason
why RIPPERis trainedon only theuniquesequences,and
not on the raw data. Otherwise,thosefew very common
sequenceswould dominate,andfew or no ruleswould be
extractedfor the othersequences.It alsosuggestsa prob-
lemfor thefrequency-basedmethods.With afew sequences
accountingfor a large percentageof the data,frequencies
of othernormal sequencestend to look insignificant,and
can be flaggedas anomalous. However, thesecommon
sequencesdo not dominateevery trace; in the shorterse-
quencesfrequenciesaremoreevenly distributed. Because
of this, simple methodsfor comparingrare and common
sequencesareinsufficient,althoughmoresophisticatedap-
proachescould perhapsmake betteruseof the frequency
information.

Eachmethodwe usedwas designedto take advantage
of the locality of intrusions.Thesequencebasedmethods,
usinglocality frameaggregatesof themismatchcounts,all
focuson thelocalhistoryof systemcalls.AlthoughHMMs
havethepotentialtocapturesomelong-termhistoryaswell,
the way we usedthem also concentratedon local events.
This is partly becauseof our choiceof model size; more
stateswould berequiredto give theHMMs a longermem-
ory.

In theserelatively small HMMs, eachstatemight be
usedto characterizemultiple partsof the traces. A single
stateproducingprimarily read systemcalls, for example,
might representseveral differentprogramstatesin which
readingdatais required.Transitionsout of thatstatemight
reflectthedifferentpossibilitiesfor goingon to write or
to close or to anotherread. Thereis a potentialhere
for missinganomalies,becausesuchstatetransitionsmight
make it possibleto mix prefixesandsuffixesthatdo not go
together. However, thereis alsoapotentialfor bettergener-
alizationthanthatofferedby thesequence-basedmethods.
As an example,if the training dataincludeexamplesof a
systemcall beingusedone,three,or four timesin a row, an
HMM will likely accepta traceusingthatsystemcall twice
in a row. The sequencebasedmethods(with the possible
exceptionof RIPPER)would identify at leastsomemis-
matches.In the datawe have studied,suchsequencesare
alwaysfalsepositives,anddo not contributeto identifying
anomalies.

An additionalfactorin evaluatingmethodsis thedegree
to which trainingcanbeautomated.Theability to addhu-
man knowledgeto the model might be helpful, but such
knowledgeshouldnotberequired.

8. Conclusions

We comparedfour methodsfor characterizingnormal
behavior anddetectingintrusionsbasedon systemcalls in
privilegedprocesses.Eachmethodwastestedon thesame
suiteof datasets,consistingof differenttypesof programs
anddifferentintrusiontechniques.On this testsuite,three
of thefour methodsperformedadequately. HiddenMarkov
models,generallyrecognizedasoneof the mostpowerful
datamodelingmethodsin existence,gavethebestaccuracy
on average,althoughat high computationalcosts.Surpris-
ingly, the much simpler sequencetime-delayembedding
methodcomparedfavorablywith HMMs. Weconcludethat
for this problem,the systemcall dataare regular enough
for even simplemodelingmethodsto work well. The av-
erageresultsindicatethat it might be possibleto achieve
increasedaccuracy with HMMs, providedsignificantcom-
putationalresourcesareavailableto trainandrun them.

However, no onemethodconsistentlygave the bestre-
sults on all programs,and resultsbetweenprogramsvar-
ied morethanresultsbetweenmethods.Variationsin false
positives were due more to the complexity of the traced
programsandtheir environmentsthanto differencesin the
analysismethods.Althoughtherearemultitudesof alterna-
tive methodsthat werenot tested,our resultsdemonstrate
that for this problem,several methodsperform well. We
believe that the choiceof datastream(shortsequencesof
systemcalls)is a moreimportantdecisionthantheparticu-
lar methodof analysis.

Historically, many computationallysophisticatedmeth-
odshave beenappliedto the intrusion-detectionproblem,
yettherearefew well-acceptedsolutionsin widespreaduse.
Onelessonfrom this paperis thatperhapsa disproportion-
ateamountof attentionhasbeendirectedto thedatamodel-
ing problem,andthatequalattentionshouldbepaidto con-
sideringwhatarethemosteffectivedatastreamsto monitor.

9. Acknowledgments

The authorsthank Mark Crosbie, Patrik D’haeseleer,
Paul Helman, Geoff Hunsicker, Anil Somayaji, Derek
Smith, Al Valdes,Wenke Lee, Carla Marceauand Matt
Stillermanfor helpfuldiscussionsandsuggestions.Wealso
thanktheMIT AI Lab andtheUNM CSSupportgroupfor
allowingustocollectdataontheirproductionsystems.This
work was supportedby grantsfrom the NationalScience
Foundation(IRI-9711199),DARPA (N00014-96-1-0680),
Intel Corporation,andIBM.

References

[1] R. C. CarrascoandJ. Oncina. Learningstochasticregular
grammarsby meansof a statemerging method. In Pro-
ceedingsof the SecondInternational ICGI Colloquiumon
GrammaticalInteferenceandApplications, pages139–152,
Alicante,Spain,1994.

[2] W. W. Cohen. Fast effective rule induction. In Machine
Learning: the12thInternationalConference. MorganKauf-
mann,1995.

[3] M. Damashek.Gaugingsimilaritywith n-grams:Language-
independentcategorizationof text. Science, 267:843–848,
Feb. 1995.

[4] S.Forrest,S.A. Hofmeyr, A. Somayaji,andT. A. Longstaff.
A senseof self for UNIX processes. In Proceedingsof
the 1996IEEE Symposiumon Securityand Privacy, pages
120–128,LosAlamitos,CA, 1996.IEEEComputerSociety
Press.

[5] P. HelmanandJ. Bhangoo.A statisticallybasedsystemfor
prioritizing informationexplorationunderuncertainty. IEEE
TransactionsonSystems,ManandCybernetics,Part A: Sys-
temsandHumans, 27(4):449–466,July1997.

[6] G. G. Helmer, J. S. K. Wong, V. Honavar, and L. Miller.
Intelligent agentsfor intrusiondetection. In Proceedings,
IEEE InformationTechnology Conference, pages121–124,
Syracuse,NY, September1998.

[7] S.A. Hofmeyr, S.Forrest,andA. Somayaji.Intrusiondetec-
tion usingsequencesof systemcalls. Journal of Computer
Security, 6:151–180,1998.

[8] H. S. Javitz andA. Valdes. The NIDES statisticalcompo-
nent: Descriptionandjustification. Technicalreport,Com-
puter ScienceLaboratory, SRI International,Menlo Park,
CA, March1993.

[9] C. Ko, G. Fink, andK. Levitt. Automateddetectionof vul-
nerabilitiesin priviledgedprogramsby executionmonitor-
ing. In Proceedingsof the 10th annualComputerSecurity
ApplicationsConference, pages134–144,December1994.

[10] A. P. Kosoresow andS. A. Hofmeyr. A shapeof self for
UNIX processes.IEEESoftware, 14(5):35–42,1997.

[11] W. Lee,1998.personalcommunication.
[12] W. LeeandS. J. Stolfo. Datamining approachesfor intru-

siondetection.In Proceedingsof the7th USENIXSecurity
Symposium, 1998.

[13] W. Lee,S.J.Stolfo,andP. K. Chan.Learningpatternsfrom
UNIX processexecutiontracesfor intrusiondetection. In
AAAI Workshopon AI Approachesto FraudDetectionand
RiskManagement, pages50–56.AAAI Press,July 1997.

[14] L. R. Rabiner. A tutorial on HiddenMarkov Modelsand
selectedapplicationsin speechrecognition.Proceedingsof
theIEEE, 77(2):257–286,1989.

[15] L. R. RabinerandB. H. Juang.An introductionto Hidden
Markov Models. IEEE ASSPMagazine, pages4–16,Jan-
uary1986.

[16] D. Ron, Y. Singer, and N. Tishby. The power of amne-
sia: Learningprobabilisticautomatawith variablememory
length.MachineLearning, 25,1996.

