
Reverse-Mode AD in a Functional Framework:

Lambda the Ultimate Backpropagator

BARAK A. PEARLMUTTER

Hamilton Institute

and

JEFFREY MARK SISKIND

Purdue University

We show that reverse-mode AD (Automatic Differentiation)—a generalized gradient-calculation
operator—can be incorporated as a first-class function in an augmented lambda calculus, and

therefore into a functional-programming language. Closure is achieved, in that the new operator
can be applied to any expression in the augmented language, yielding an expression in that
language. This requires the resolution of two major technical issues: (a) how to transform nested

lambda expressions, including those with free-variable references, and (b) how to support self
application of the AD machinery. AD transformations preserve certain complexity properties,
among them that the reverse phase of the reverse-mode AD transformation of a function have
the same temporal complexity as the original untransformed function. First-class unrestricted

AD operators increase the expressive power available to the numeric programmer, and may have
significant practical implications for the construction of numeric software that is robust, modular,
concise, correct, and efficient.

Categories and Subject Descriptors: D.3.2.a [Programming Languages]: Language Classifi-
cations—Applicative (functional) languages; G.1.4.b [Numerical Analysis]: Quadrature and

Numerical Differentiation—Automatic differentiation

General Terms: Experimentation, Languages, Performance

Additional Key Words and Phrases: closures, derivatives, forward-mode AD, higher-order AD,
higher-order functional languages, Jacobian, program transformation, reflection

1. INTRODUCTION

When you first learned calculus, you learned how to take the derivatives of some
simple expressions. Later you learned the chain rule: the ability to take the deriva-
tive of the composition of two functions. The fact that the space of expressions can

Pearlmutter was supported, in part, by Science Foundation Ireland grant 00/PI.1/C067 and the
Higher Education Authority of Ireland. Siskind was supported, in part, by NSF grant CCF-
0438806. Any opinions, findings, and conclusions or recommendations expressed in this material

are those of the authors and do not necessarily reflect the views of the sponsors.
Authors’ addresses: B. A. Pearlmutter, Hamilton Institute and Department of Computer Science,
NUI Maynooth, Co. Kildare, Ireland; email: barak@cs.nuim.ie; J. M. Siskind (contact author),
School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue,

Room 330, West Lafayette, IN 47907-2035 USA; email: qobi@purdue.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20TBD ACM 0164-0925/20TBD/0500-0001 $5.00

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD, Pages 1–35.

2 · B. A. Pearlmutter and J. M. Siskind

be defined inductively as a finite set of basis functions closed with function compo-
sition, and the fact that you could take the derivative of each basis function as well
as function composition, led to two important closure properties. First, you could
take the derivative of any (differentiable) expression. Second, the derivative of an
expression was itself an expression. Thus you could take higher-order derivatives.

This traditional method for taking derivatives, however, has an undesirable prop-
erty that is often overlooked: the length of the expression denoting the derivative of
an expression can be dramatically longer than the length of the original expression.
The reason is that (uv)′ = uv′ + u′v. Thus the derivative of a product of n factors:

(u1u2 · · ·un)′ = (u′

1u2 · · ·un) + (u1u
′

2 · · ·un) + · · ·+ (u1u2 · · ·un−1u
′

n)
︸ ︷︷ ︸

n terms

has n terms, each of which has n factors, and thus has length that is not linear in n.
In general, this length cannot be substantially reduced without the introduction
of temporaries. Evaluating derivatives could take dramatically more time than
evaluating the original expressions. While this may be of little consequence in
classical analysis, it has practical implications in computational science.

In this paper, we present a method for computing the derivatives of a different
space of expressions. We retain the same finite set of basis functions but replace
function composition with the lambda calculus. We present a source-to-source
transformation for lambda-calculus expressions that plays the same role as the
chain rule does for traditional expressions. Doing so leads to three important closure
properties. First, like before, our method allows one to take the derivative of any

(differentiable) lambda-calculus expression. Second, like before, the derivative of
a lambda-calculus expression is itself a lambda-calculus expression, allowing one
to take higher-order derivatives. Third, unlike before, the length of a transformed
lambda-calculus expression is larger than that of the original expression only by a
constant factor. Moreover, the temporal complexity of evaluating a transformed
expression is the same as that of the original expression.

Our methods are a generalization of a technique known as Automatic Differenti-
ation or AD [Griewank, 2000; Corliss et al., 2001]. AD is an established enterprise
that seeks to take the derivatives of functions specified as programs by transform-
ing the computation graph rather than by finite differencing. AD has traditionally
been applied to imperative programs in two forms: forward mode [Wengert, 1964;
Kedem, 1980] and reverse mode [Speelpenning, 1980; Rall, 1981]. Backpropagation
[Rumelhart et al., 1986] is a special case of reverse-mode AD used to compute the
gradient of a multi-layer perceptron to minimize an error function when training
the weights. The central contribution of this paper is a correct and implemented
framework for applying reverse-mode AD to functional programs.1

Computing the gradient of a function R
n → R using forward-mode AD requires

n applications of forward-mode AD, imposing an O(n) factor slowdown. The same

1Forward-mode AD has been previously applied to functional programs, as discussed in Section 2.
Our framework also supports applying forward-mode AD to functional programs, incorporating

forward mode and reverse mode in a unified fashion that allows them to be applied to each other
in the same program. However, with the exception of the tutorial in Section 2, this paper focuses
solely on reverse mode.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Reverse-Mode AD in a Functional Framework · 3

gradient can also be computed using a single application of reverse-mode AD, which
would impose only a constant factor slowdown. For this reason, the methods we
describe may enjoy significant practical application in computational mathematics,
where gradients of functions of high-dimensional input, expressed as large complex
programs, are needed for tasks like function optimization, function approximation,
parameter estimation, and the solution of differential equations.

Traditional implementations of reverse-mode AD often lack the closure property.
Derivatives are typically computed by recording a ‘tape’ of the computation and
interpreting (or run-time compiling) a transformation of the tape played back in
reverse. This tape is a different kind of entity than the original program. This
complicates the process of taking higher-order derivatives. The fact that the tape
must be interpreted (or run-time compiled) introduces a slowdown in the process
of computing derivatives. In contrast, our method represents the tape as a chain of
closures, the same kind of entity as the original program. This simplifies the process
of taking higher-order derivatives and makes our approach amenable to efficient
code generation with standard compilation techniques for functional-programming
languages.

Our method introduces a novel first-class programming-language primitive
←−
J

that performs reverse-mode AD by way of a non-local program transformation. This
allows application of the reverse-mode AD transformation by programs within the
language, rather than by a preprocessor. While such transformation is performed
reflectively at run time in our prototype implementation (an interpreter), flow anal-
ysis and partial evaluation could be used to migrate the transformation to compile
time. In the future, we plan to construct such an optimizing compiler for the meth-
ods described in this paper using extensions of the techniques from the Stalin

compiler for Scheme [Siskind, 1999].
To achieve closure, our method addresses two technical issues. First, we must

support transformation of nested lambda expressions, particularly those with free-
variable references. Our method can handle the case where reverse-mode AD is
applied to a function f that takes an argument x and that, in turn, applies reverse-
mode AD to a function g, nested inside f , that has a free reference to x, i.e., the
argument to the surrounding function f . This case is useful because, as shown in
Section 5, it allows computations like minx maxy f(x, y), where x is such a free-

variable reference. Second, since to achieve closure it must be possible to apply
←−
J

to any function, inter alia, we must support application of
←−
J to itself.2

This paper contributes to both the functional programming community and
the AD community. To the functional-programming community, it contributes a
method for performing AD that has the correct closure and complexity properties.
To the AD community, it contributes the ability to apply reverse mode in a nested
fashion to closures with free variables.

The methods described below have potential practical application not only to
building better functional-programming implementations for scientific computing,

2An attempt to create a typed lambda calculus incorporating
←−
J must address the issue of giving

←−
J

a polymorphic type while allowing self-application like (
←−
J
←−
J). Such self-application cannot be

prohibited because it arises internally from any nested application of AD.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

4 · B. A. Pearlmutter and J. M. Siskind

but also to building more powerful AD systems for conventional languages. For
example, many modern Fortran compilers use SSA as an intermediate represen-
tation, which has been shown to be equivalent to continuation-passing style [Kelsey,
1995; Appel, 1998]. Thus, correct efficient nestable reverse-mode AD for the general
lambda calculus immediately allows, at least in principle, the incorporation of such
an operator even into a Fortran implementation. This has not previously been
possible; to date, no AD system for any compiled language has allowed nested use
of the reverse-mode AD operator.

The remainder of this paper is organized as follows. Section 2 gives a brief tutorial
on AD. Section 3 gives an informal overview of our new method. Section 4 presents
the technical details of our method. Section 5 gives examples that illustrate the
utility of our method. Section 6 discusses prior related work on reverse-mode AD.
Section 7 discusses fanout and the relationship between fanout, binary functions,
and free variables. Section 8 summarizes the novel contributions of this paper.

2. A BRIEF TUTORIAL ON AD

For the benefit of readers unfamiliar with AD, we give a brief tutorial. Our tutorial
will also benefit readers familiar with AD, as we use nonstandard notation and
a nonstandard exposition that extends naturally to the later presentation of our
method.

For much of this paper, we use x to denote real scalars, x to denote real (column)
vectors, X to denote real matrices, u to denote functions from real scalars to real
scalars, b to denote functions from pairs of real scalars to real scalars, f to denote
functions from real vectors to real vectors or from real vectors to real scalars, and
juxtaposition to denote function application, which we take to associate to the
left. We use subscripts to distinguish variables, and indicate indexing of vectors
and matrices with square brackets. We use comma to indicate pair and tuple
formation, [] to denote the empty list, and square brackets to also denote list
formation. Whether square brackets denote indexing or list formation will be clear
from context. Infix ◦ denotes function composition, + denotes either scalar or
vector addition, and × denotes multiplication: either a matrix by a matrix, a
matrix by a vector, a scalar by a vector, or a scalar by a scalar. Multiplication has
higher precedence than addition. A superscript ⊤ denotes matrix transposition, so
(X1 ×X2)

⊤ = X⊤
2 ×X⊤

1.
D denotes the higher-order function that maps functions u to functions that

compute the derivative of u, and D1 and D2 denote the higher-order functions that
map functions b to functions that compute the partial derivatives of b with respect
to their first and second arguments respectively. ∇ and J denote the higher-order
functions that map functions f to functions that compute the gradient vector or
the Jacobian matrix, respectively, of f , at a real vector.3 We use = for equations,

3In classical differential calculus, the gradient of a function f : R
n → R at x is defined as

∇f(x) =
` ∂f(x)

∂x1
, . . . ,

∂f(x)
∂xn

´

. The Jacobian generalizes the notion of the gradient to functions

f : R
n → R

m. The m× n Jacobian matrix J of f at x has entries Jij =
∂fi(x)

∂xj
. Matrices can be

viewed both as data and as linear functions. The functional view comes from the fact that one
can multiply a matrix by a vector to yield a vector. In this sense, we can view the above Jacobian
matrix as a (linear) function J : R

n → R
m and further view its transpose as a (linear) function

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Reverse-Mode AD in a Functional Framework · 5

:= for assignments, ≡ for mathematical definitions and meta-level definitions used

outside a program,
△
= for definitions and let bindings within a program, and ; for

program transformations. We use semicolon to indicate sequencing of assignments
and let bindings (i.e., as in let* in Scheme). We further use x+:= e as shorthand

for x := x + e, and similarly for ⊕:= and ⊕
△
=. (The function ⊕ will be defined

later.) We adopt the standard convention that the scope of lambda binders extends
as far right as possible. Because all lambda expressions used in this paper bind a
single variable, we omit the conventional dot between the bound variable and the
body.

A program can be viewed as a composition f = f1 ◦ · · · ◦ fn:

x1 = f1 x0

...

xn = fn xn−1

Here, each xi denotes a machine state in R
m, x0 denotes the input machine state,

xn denotes the output machine state, and each fi denotes the transition function
from machine state xi−1 to machine state xi. From the chain rule, we have:

J f x0 = (J fn xn−1)× · · · × (J f1 x0)

(J f x0)
⊤ = (J f1 x0)

⊤× · · · × (J fn xn−1)
⊤

This leads to two ways to compute the Jacobian of f at x0:

−⇁
X1 = (J f1 x0)
−⇁
X2 = (J f2 x1)×

−⇁
X1

...
−⇁
Xn = (J fn xn−1)×

−−−⇁
Xn−1

which computes
−⇁
Xn = J f x0, and:

↽−−−−
Xn−1 = (J fn xn−1)

⊤

↽−−−−
Xn−2 = (J fn−1 xn−2)

⊤×
↽−−−−
Xn−1

...
↽−−
X0 = (J f1 x0)

⊤×
↽−−
X1

which computes
↽−−
X0 = (J f x0)

⊤. These have a downside: storage of the inter-

mediate
−⇁
Xi and

↽−
Xi variables can be quadratic in the size of the machine state.

Furthermore, each requires a special case for the first line. These issues can both

J⊤ : R
m → R

n.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

6 · B. A. Pearlmutter and J. M. Siskind

xi−1 = (xi−1[1]

��

· · · xi−1[Li] · · · xi−1[Ri]

zzttttttttt

��

· · · xi−1[m]

��

)

xi = fi xi−1 = (xi−1[1] · · · ui xi−1[Ri] · · · xi−1[Ri] · · · xi−1[m])

xi−1 = (xi−1[1]

��

· · · xi−1[Li] · · · xi−1[Ri]

wwooooooooooo

��

· · · xi−1[Si]

tthhhhhhhhhhhhhhhhhhh

��

· · · xi−1[m]

��

)

xi = fi xi−1 = (xi−1[1] · · · bi (xi−1[Ri],xi−1[Si]) · · · xi−1[Ri] · · · xi−1[Si] · · · xi−1[m])

Fig. 1. Graphical depiction of unary and binary machine-state transition functions.

be resolved, in the first case, by computing
−⇁
xn = (J f x0)×

−⇁
x0:

−⇁
x1 = (J f1 x0)×

−⇁
x0

...
−⇁
xn = (J fn xn−1)×

−−⇁
xn−1

and, in the second case, by computing
↽−
x0 = (J f x0)

⊤×
↽−
xn:

↽−−−
xn−1 = (J fn xn−1)

⊤×
↽−
xn

...
↽−
x0 = (J f1 x0)

⊤×
↽−
x1

The former is called forward-mode AD and the latter is called reverse-mode AD.
We refer to the xi as the primal variables, the

−⇁
xi as the perturbation variables,

and the
↽−
xi as the sensitivity variables. The k-th column of the Jacobian

−⇁
Xn can

be recovered by taking
−⇁
x0 to be a basis vector with a one at index k and zeros

elsewhere and computing
−⇁
xn. Correspondingly, the j-th row can be recovered by

taking
↽−
xn to be a basis vector with a one at index j and zeros elsewhere and

computing
↽−
x0.

These perturbation and sensitivity variables can be viewed as follows. The en-
tire program is a function f which maps x0 to xn via intermediate values xi.

The perturbation variable
−⇁
xi denotes the product of the Jacobian of the function

f1 ◦ · · · ◦ fi evaluated at x0 multiplied by
−⇁
x0. The sensitivity variable

↽−
xi denotes

the product of the transpose of the Jacobian of the function fi+1 ◦ · · ·◦fn evaluated

at xi multiplied by
↽−
xn.

The transition functions fi typically compute a single element of xi at index Li,
either as a unary scalar function ui of a single element of xi−1 at index Ri or as a
binary scalar function bi of two elements of xi−1 at indices Ri and Si passing the
remaining elements of xi−1 unchanged through to xi. We refer to such functions
as unary and binary machine-state transition functions (Figure 1). (Another way

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Reverse-Mode AD in a Functional Framework · 7

Li Ri

↓ ↓

1

. . .

1
Li → 0 u′

1

. . .

Ri → 1

. . .

1

u′ = D ui xi−1[Ri]

Li Ri Si

↓ ↓ ↓

1

. . .

1

Li → 0 b′1 b′2
1

. . .

Ri → 1

. . .

Si → 1

. . .

1

b′1 = D1 bi (xi−1[Ri],xi−1[Si])

b′2 = D2 bi (xi−1[Ri],xi−1[Si])

Fig. 2. The Jacobian J fi xi−1 of unary and binary machine-state transition functions.

of viewing this is that we have n assignments, each of the form x[Li] := ui x[Ri]
or x[Li] := b (x[Ri],x[Si]), where we use i = 1, . . . , n to index assignments.) In
this case, the Jacobian matrices J fi xi−1 are sparse, differing from the identity

matrix by only a few elements (Figure 2). Because of this,
−⇁
xi differs from

−−⇁
xi−1 at

only a few elements (Figure 3) and
↽−−−
xi−1 differs from

↽−
xi only at a few elements

(Figure 4).

When computing the sensitivities (Figure 4), note that the sensitivities for the
input indices Ri and Si are accumulated and the sensitivity for the output index Li

is zeroed. This explains why fanout (more than one use of a computed quantity)
in the original computation necessitates addition during the computation of sensi-
tivities, and destructive assignment (overwriting a computed quantity) necessitates
zeroing of a sensitivity. Figures 1–4 assume that all indices are distinct. When the
indices are not distinct, the structure of the Jacobian (Figure 2) simplifies. This
introduces some additional cases in the following analysis.

If we let u′ = D ui xi−1[Ri], in the unary case:

xi[j] = (fi xi−1)[j]

=

{

ui xi−1[Ri] when j = Li

xi−1[j] otherwise

(J fi xi−1)[j, k] =

u′ when j = Li ∧ k = Ri

1 when j 6= Li ∧ j = k

0 otherwise

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

8 · B. A. Pearlmutter and J. M. Siskind

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

−−⇁
xi−1[1]

.

.

.
−−⇁
xi−1[Li − 1]

u′ ×
−−⇁
xi−1[Ri]

−−⇁
xi−1[Li + 1]

..

.
−−⇁
xi−1[Ri]

..

.
−−⇁
xi−1[m]

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

. . .

1
0 u′

1

. . .

1

. . .

1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

−−⇁
xi−1[1]

.

.

.
−−⇁
xi−1[Li − 1]
−−⇁
xi−1[Li]
−−⇁
xi−1[Li + 1]

..

.
−−⇁
xi−1[Ri]

..

.
−−⇁
xi−1[m]

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

u′ = D ui xi−1[Ri]

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

−−⇁
xi−1[1]

.

..
−−⇁
xi−1[Li − 1]

b′1 ×
−−⇁
xi−1[Ri] + b′2 ×

−−⇁
xi−1[Si]

−−⇁
xi−1[Li + 1]

.

.

.
−−⇁
xi−1[Ri]

.

.

.
−−⇁
xi−1[Si]

.

.

.
−−⇁
xi−1[m]

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

. . .

1

0 b′1 b′2
1

. . .

1

. . .

1

. . .

1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

−−⇁
xi−1[1]

.

..
−−⇁
xi−1[Li − 1]
−−⇁
xi−1[Li]
−−⇁
xi−1[Li + 1]

.

.

.
−−⇁
xi−1[Ri]

.

.

.
−−⇁
xi−1[Si]

.

.

.
−−⇁
xi−1[m]

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

b′1 = D1 bi (xi−1[Ri],xi−1[Si])
b′2 = D2 bi (xi−1[Ri],xi−1[Si])

Fig. 3. Forward-mode AD: computing
−⇁
xi = (J fi xi−1)×

−−⇁
xi−1 for unary and binary machine-state

transition functions.

−⇁
xi [j] = ((J fi xi−1)×

−−⇁
xi−1)[j]

=

{

u′ ×
−−⇁
xi−1[Ri] when j = Li

−−⇁
xi−1[j] otherwise

↽−−−
xi−1[k] = ((J fi xi−1)

⊤×
↽−
xi)[k]

=

↽−
xi[k] + u′ ×

↽−
xi[Li] when k = Ri ∧Ri 6= Li

u′ ×
↽−
xi[k] when k = Ri = Li

0 when k 6= Ri ∧ k = Li
↽−
xi[k] otherwise

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Reverse-Mode AD in a Functional Framework · 9

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

↽−
xi[1]
..
.

↽−
xi[Li − 1]

0
↽−
xi[Li + 1]
.
.
.

u′ ×
↽−
xi[Li] +

↽−
xi[Ri]

.

.

.
↽−
xi[m]

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

. . .

1
0

1

. . .

u′ 1

. . .

1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

↽−
xi[1]
.
.
.

↽−
xi[Li − 1]

↽−
xi[Li]

↽−
xi[Li + 1]
..
.

↽−
xi[Ri]
..
.

↽−
xi[m]

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

u′ = D ui xi−1[Ri]

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

↽−
xi[1]
.
.
.

↽−
xi[Li − 1]

0
↽−
xi[Li + 1]
.
..

b′1 ×
↽−
xi[Li] +

↽−
xi[Ri]

.

..

b′2 ×
↽−
xi[Li] +

↽−
xi[Si]

.

..
↽−
xi[m]

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

. . .

1

0
1

. . .

b′1 1

. . .

b′2 1

. . .

1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

↽−
xi[1]
.
..

↽−
xi[Li − 1]

↽−
xi[Li]

↽−
xi[Li + 1]
.
.
.

↽−
xi[Ri]
.
.
.

↽−
xi[Si]
.
.
.

↽−
xi[m]

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

b′1 = D1 bi (xi−1[Ri],xi−1[Si])
b′2 = D2 bi (xi−1[Ri],xi−1[Si])

Fig. 4. Reverse-mode AD: computing
↽−−−
xi−1 = (J fi xi−1)

⊤×
↽−
xi for unary and binary machine-

state transition functions.

If we let b′1 = D1 bi (xi−1[Ri],xi−1[Si]) and b′2 = D2 bi (xi−1[Ri],xi−1[Si]), in the
binary case:

xi[j] = (fi xi−1)[j]

=

{

bi (xi−1[Ri],xi−1[Si]) when j = Li

xi−1[j] otherwise

(J fi xi−1)[j, k] =

b′1 when j = Li ∧ k = Ri ∧Ri 6= Si

b′2 when j = Li ∧ k = Si ∧Ri 6= Si

b′1 + b′2 when j = Li ∧ k = Ri = Si

1 when j 6= Li ∧ j = k

0 otherwise

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

10 · B. A. Pearlmutter and J. M. Siskind

−⇁
xi [j] = ((J fi xi−1)×

−−⇁
xi−1)[j]

=

{

b′1 ×
−−⇁
xi−1[Ri] + b′2 ×

−−⇁
xi−1[Si] when j = Li

−−⇁
xi−1[j] otherwise

↽−−−
xi−1[k] = ((J fi xi−1)

⊤×
↽−
xi)[k]

=

↽−
xi[k] + b′1 ×

↽−
xi[Li] when k = Ri ∧Ri 6= Si ∧Ri 6= Li

↽−
xi[k] + b′2 ×

↽−
xi[Li] when k = Si ∧Ri 6= Si ∧ Si 6= Li

b′1 ×
↽−
xi[k] when k = Ri = Li ∧Ri 6= Si

b′2 ×
↽−
xi[k] when k = Si = Li ∧Ri 6= Si

↽−
xi[k] + (b′1 + b′2)×

↽−
xi[Li] when k = Ri = Si ∧ k 6= Li

(b′1 + b′2)×
↽−
xi[k] when k = Ri = Si = Li

0 when k 6= Ri ∧ k 6= Si ∧ k = Li
↽−
xi[k] otherwise

With forward-mode AD, computation of the perturbation variables
−⇁
xi can be

interleaved with the original primal computation:

x1 = f1 x0

−⇁
x1 = (J f1 x0)×

−⇁
x0

...

xn = fn xn−1

−⇁
xn = (J fn xn−1)×

−−⇁
xn−1

This leads to a simple transformation:

x1 = f1 x0

...

xn = fn xn−1

;

−⇀x1 =
−⇀
f1
−⇀x0

...

−⇀xn =
−⇀
fn
−−⇀xn−1

with an appropriate definition of −⇀· on vectors and functions thereof:

−⇀x ≡ (x,
−⇁
x)

−⇀
f −⇀x ≡ ((f x), ((J f x)×

−⇁
x))

The fact that xi−1 and
−−⇁
xi−1 are no longer referenced once xi and

−⇁
xi are computed,

coupled with the fact that −⇀x can be represented as a vector of pairs rather than a

pair of vectors, interleaving x with
−⇁
x , means that when the fi are machine-state

transition functions, the original program can be written as a sequence of assign-
ments of the form xLi

:= ui xRi
and xLi

:= bi (xRi
, xSi

), referencing variables x

that contain scalars, and the transformed program can be written as a sequence

of assignments of the form −⇀xLi
:= −⇀ui

−⇀xRi
and −⇀xLi

:=
−⇀
bi (−⇀xRi

,−⇀xSi
), referencing

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Reverse-Mode AD in a Functional Framework · 11

variables −⇀x ≡ (x,
−⇁
x) where:

−⇀u −⇀x ≡ ((u x), ((D u x)×
−⇁
x))

−⇀
b (−⇀x1 ,−⇀x2) ≡ ((b (x1, x2)), ((D1 b (x1, x2))×

−⇁
x1) + ((D2 b (x1, x2))×

−⇁
x2)))

This means that forward-mode AD can be implemented in almost any programming
language and programming style, functional or otherwise, simply by overloading the

representation of reals x with pairs −⇀x of reals x and
−⇁
x and by overloading the

primitives u and b with −⇀u and
−⇀
b respectively. This implementation technique

obviously preserves both the temporal and spatial complexity of the program. In
the functional realm, forward-mode AD has been implemented in Haskell [Kar-
czmarczuk, 1998a,b, 1999, 2001b] and Scheme [Sussman et al., 2001; Siskind and
Pearlmutter, 2007; Pearlmutter and Siskind, 2007], although not all of these systems
support nesting [Siskind and Pearlmutter, 2005].

In contrast, with reverse-mode AD, computation of the sensitivity variables
↽−
xi

cannot be interleaved with the original primal computation. The computation must
be divided into two phases, a forward phase that computes the primal variables and
a reverse phase that computes the sensitivity variables in reverse order:

x1 = f1 x0

...

xn = fn xn−1

↽−−−
xn−1 = (J fn xn−1)

⊤×
↽−
xn

...
↽−
x0 = (J f1 x0)

⊤×
↽−
x1

Note that while in forward mode xi is no longer referenced once xi+1 is computed,
in reverse mode (relevant parts of) the primal variables xi computed during the

forward phase must be saved until the corresponding sensitivity variables
↽−
xi are

computed during the reverse phase. Also note that while forward-mode AD can be
performed using overloading, a local program transformation, the above requires a
non-local program transformation.

It is tempting to try to perform reverse-mode AD with a local program transfor-
mation:

x1 = f1 x0

x1 = λ
↽−
x x0 ((J f1 x0)

⊤×
↽−
x)

...

xn = fn xn−1

xn = λ
↽−
x xn−1 ((J fn xn−1)

⊤×
↽−
x)

If we take x0 to be the identity function, the reverse phase can be performed by

evaluating xn

↽−
xn. We refer to x as a backpropagator variable. Note that each

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

12 · B. A. Pearlmutter and J. M. Siskind

backpropagator variable xi closes over the previous backpropagator variable xi−1

to implement sequencing of the reverse phase. Also note that each backpropaga-
tor variable xi also closes over the corresponding previous primal variable xi−1

to preserve the necessary values until the reverse phase. This leads to a simple
transformation:

x1 = f1 x0

...

xn = fn xn−1

;

↼−x1 =
↼−
f1

↼−x0

...

↼−xn =
↼−
fn

↼−−xn−1

with an appropriate definition of ↼−· on vectors and functions thereof:

↼−x ≡ (x,x)
↼−
f ↼−x ≡ ((f x), (λ

↽−
x x ((J f x)⊤×

↽−
x)))

However unlike in forward mode, where −⇀x ≡ (x,
−⇁
x) can be interleaved as a vector

of pairs, it is not possible to interleave ↼−x ≡ (x,x) because x is a function rather
than a vector. Thus, one must use different techniques to implement reverse-mode
AD with a local program transformation that takes advantage of the locality of
machine-state transition functions.

The traditional way this is done is to maintain a single global backpropagator
variable x that is updated via side effect and by taking:

↼−
f x ≡ begin x := λ

↽−
x x ((J f x)⊤×

↽−
x);

(f x) end

This eliminates the need to pair backpropagators with primal values and allows
taking ↼−x ≡ x. When the fi are machine-state transition functions, and the original
program is written as a sequence of assignments of the form xLi

:= ui xRi
and

xLi
:= bi (xRi

, xSi
), referencing variables x that contain scalars, the transformed

program can be written as a sequence of assignments4 of the form:

x := λ[] begin
↽−−
xRi

+:= (D ui
↼−xRi

)×
↽−−
xLi

;
↽−−
xLi

:= 0;
x [] end

↼−xLi
:= ui

↼−xRi

4We are deliberately imprecise here as to the semantics of assignment in the presence of closures.

The intent is to close over the current value of a variable and have the closed-over value remain
unchanged when a variable is mutated. Note that the backpropagators take no argument and
return no result. They are executed for side effect. The reverse phase is performed by appropriately

initializing all output sensitivity variables to the values of
↽−−
xn, initializing all other sensitivity

variables to zero, calling the backpropagator x, and examining the values of
↽−
x0 that remain in

select sensitivity variables after the backpropagator returns.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Reverse-Mode AD in a Functional Framework · 13

and:

x := λ[] begin
↽−−
xRi

+:= (D1 bi (↼−xRi
,↼−xSi

))×
↽−−
xLi

;
↽−−
xSi

+:= (D2 bi (↼−xRi
,↼−xSi

))×
↽−−
xLi

;
↽−−
xLi

:= 0;
x [] end

↼−xLi
:= bi (↼−xRi

,↼−xSi
)

taking ↼−x ≡ x. The above transformation assumes that the indices are distinct,
i.e., Li 6= Ri 6= Si, but it is straightforward to relax this assumption.

Traditional implementations refer to x as the ‘tape,’ usually implemented as an
interpreted (or run-time-compiled) data structure rather than as a chain of closures.
For straight-line code, one can dispense with the tape if one admits a non-local
program transformation. One simply postpends the program with assignments to
initialize the sensitivity variables and then postpends assignments of the form:

↽−−
xRi

+:= (D ui
↼−xRi

)×
↽−−
xLi

;
↽−−
xLi

:= 0

for each primal assignment xLi
:= ui xRi

, and of the form:

↽−−
xRi

+:= (D1 bi (↼−xRi
,↼−xSi

))×
↽−−
xLi

;
↽−−
xSi

+:= (D2 bi (↼−xRi
,↼−xSi

))×
↽−−
xLi

;
↽−−
xLi

:= 0

for each primal assignment xLi
:= bi (xRi

, xSi
), in reverse order to their occurrence

in the primal. This again assumes that Li 6= Ri 6= Si.
Note that reverse-mode AD preserves the temporal complexity of the program.

However due to the need to save primal values for use during the reverse phase, spa-
tial complexity is not preserved. Also, while this approach can be implemented as
a local program transformation in most programming languages, it is not amenable
to a functional style due to the use of side effects.

3. AN INFORMAL OVERVIEW OF OUR METHOD

We have developed a novel method for performing reverse-mode AD in a functional
framework. In this section, we present an informal overview of this method. We
do this by way of a small running example. We present the technical details of our
method in the next section.

First consider a restricted straight-line program that operates on real-valued
variables x with unary functions u from reals to reals, taking x0 as the input and
producing xn as the output:

xL1
:= u1 xS1

...

xLn
:= un xSn

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

14 · B. A. Pearlmutter and J. M. Siskind

From Section 2, the tapeless non-local reverse-mode AD transformation of this
program is:

xL1
:= u1 xS1

...

xLn
:= un xSn

;

xL1
:= u1 xS1

...

xLn
:= un xSn

↽−
x1 := 0

...
↽−−
xm := 0

↽−−
xSn

+:= (D un xSn
)×

↽−−
xLn

↽−−
xLn

:= 0

...
↽−−
xS1

+:= (D u1 xS1
)×

↽−−
xL1

↽−−
xL1

:= 0

Care must be taken in the above to omit the initialization
↽−
xj := 0 for j = Ln.

If we restrict our consideration to single-assignment code, the left-hand sides xLi

of the assignments can be replaced (by alpha renaming) with xi. In such single-
assignment code, the special cases considered in the previous section to deal with
the possibility that the same variable appears on both the left- and right-hand sides

of an assignment are not needed. Furthermore, the zeroing assignments
↽−−
xLi

:= 0
during the reverse phase that would result from destructive assignments in the
forward phase can be eliminated. We typographically distinguish single-assignment
code fragments from destructive-assignment code fragments by denoting the former
with = and the latter with :=. Note that even though the forward phase is now
single assignment the reverse phase is not, due to fanout in the forward phase.

x1 = u1 xS1

...

xn = un xSn

;

x1 = u1 xS1

...

xn = un xSn

↽−
x0 := 0

...
↽−−−
xn−1 := 0
↽−−
xSn

+:= (D un xSn
)×

↽−
xn

...
↽−−
xS1

+:= (D u1 xS1
)×

↽−
x1

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Reverse-Mode AD in a Functional Framework · 15

If we take ui
△
= λ

↽−
x (D ui xSi

)×
↽−
x, this gives:

x1 = u1 xS1

...

xn = un xSn

;

x1 = u1 xS1

...

xn = un xSn

↽−
x0 := 0

...
↽−−−
xn−1 := 0
↽−−
xSn

+:=un

↽−
xn

...
↽−−
xS1

+:=u1
↽−
x1

If we further take ↼−u x
△
= ((u x), (λ

↽−
x(D u x)×

↽−
x)), we can write:

x1 = u1 xS1

...

xn = un xSn

;

(x1, x1) = ↼−u1 xS1

...

(xn, xn) = ↼−un xSn

↽−
x0 := 0

...
↽−−−
xn−1 := 0
↽−−
xSn

+:=xn

↽−
xn

...
↽−−
xS1

+:=x1
↽−
x1

Note that this transformation is valid only for single-assignment code. The back-
propagator variables xi are accessed during the reverse phase in reverse order to
which they were assigned during the forward phase. Applying this transformation
to non-single-assignment code would result in the backpropagators being overwrit-
ten during the forward phase and the wrong backpropagators being called during
the reverse phase.

Here, each xi is simply a function from
↽−
xi to

↽−−
xSi

. Evaluating xi

↽−
xi has the

same temporal complexity as evaluating ui xSi
. This is the key property that leads

to our method having the appropriate temporal complexity.
Let us now assume that the primitives u are stored in variables x and that the

reverse-transformed primitives ↼−u are also stored in variables ↼−x . In the untrans-
formed program, a variable x can contain either a real value or a primitive. For the
sake of symmetry, we will construct the transformed program out of corresponding
transformed variables ↼−x that can contain either transformed real values or trans-
formed primitives. For reasons that we will discuss in Section 4, transformed real

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

16 · B. A. Pearlmutter and J. M. Siskind

values are simply tagged real values. Transformed primitives will map transformed
real values to transformed real values paired with backpropagators. This leads to
the following transformation:

x1 = xR1
xS1

...

xn = xRn
xSn

;

(↼−x1 , x1) = ↼−xR1

↼−xS1

...

(↼−xn, xn) = ↼−−xRn

↼−xSn

↽−
x0 := 0

...
↽−−−
xn−1 := 0
↽−−
xSn

+:= xn

↽−
xn

...
↽−−
xS1

+:=x1
↽−
x1

Let us generalize further by allowing the variables x in the untransformed pro-
gram to contain arbitrary programming-language values and the primitives in the
untransformed program to map arbitrary values to arbitrary values. Doing so re-

quires us to generalize transformed variables ↼−x and sensitivity variables
↽−
x to

contain arbitrary transformed and sensitivity values that correspond to the arbi-
trary untransformed values stored in the corresponding variables x. This requires
us to add arbitrary sensitivity values.

We define some new machinery to facilitate manipulation of sensitivities of po-
tentially aggregate data. Loosely speaking, the first is a unary function 0 that
maps any (potentially aggregate) value to an otherwise identical value except that
all reals have been replaced with zeros. The second is a binary function ⊕ which
can only be invoked on (potentially aggregate) conformant values x1 and x2, where
by conformant we mean that (0 x1) = (0 x2). The value x3 = x1 ⊕ x2 conforms
to x1 and x2, differing only in that the real values in x3 are the sum of the real
values at corresponding positions in x1 and x2. If we regard (potentially nested)
aggregate values as scaffolding for the vector of reals at their fringe, ⊕ is simply
vector addition and 0 can be viewed either as scalar multiplication by zero or as
a constructor for the zero vector of this vector space. Given this view, one can
generalize the notions of vectors, matrices, Jacobians, matrix transposition, and
matrix-vector multiplication, and thus forward- and reverse-mode AD, to arbitrary

aggregate data. Finally, we define a unary function
←−
J that maps values to corre-

sponding transformed values and its inverse function
←−
J −1 that maps transformed

values to corresponding untransformed values. This machinery allows
↽−
x to be

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Reverse-Mode AD in a Functional Framework · 17

properly initialized with 0 (
←−
J −1 ↼−x):

x1 = xR1
xS1

...

xn = xRn
xSn

;

(↼−x1 , x1) = ↼−xR1

↼−xS1

...

(↼−xn, xn) = ↼−−xRn

↼−xSn

↽−
x0 := 0 (

←−
J −1 ↼−x0)

...
↽−−−
xn−1 := 0 (

←−
J −1 ↼−−xn−1)

↽−−
xSn
⊕:= xn

↽−
xn

...
↽−−
xS1
⊕:= x1

↽−
x1

The above transformation of single-assignment straight-line code can be applied
to transform any α-converted lambda expression in A-normal form [Sabry and
Felleisen, 1993]. (A lambda expression is in A-normal form if its body is a let*

whose body is a variable reference and whose binding expressions are all variable ref-
erences, applications of variable references to variable references, or lambda expres-
sions in A-normal form. Lambda expressions in A-normal form are thus analogous
to straight-line code. The requirement for α-conversion comes from the same un-
derlying constraint as the need for the straight-line code to be single-assignment.)
Note that the forward and reverse phases are separated. The forward phase re-
turns a transformed value paired with a function that performs the reverse phase.

This function maps
↽−
xn to

↽−
x0, by multiplying the transpose of the Jacobian of

the function that maps x0 to xn, at x0, by
↽−
xn, under appropriate generalizations

of the notions of vectors, matrices, Jacobians, matrix transposition, and matrix-
vector multiplication. It can thus be viewed as a backpropagator. We now have
a self-similarity property whereby transformed primitives and transformed lambda
expressions both map transformed values to transformed values paired with back-
propagators. Thus untransformed and transformed code can treat primitive and

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

18 · B. A. Pearlmutter and J. M. Siskind

user-defined functions equivalently:

λx0 let x1
△
= xR1

xS1
;

...

xn
△
= xRn

xSn

in xn end

;

λ↼−x0 let (↼−x1 , x1)
△
= ↼−xR1

↼−xS1
;

...

(↼−xn, xn)
△
= ↼−−xRn

↼−xSn

in (↼−xn, (λ
↽−
xn let

↽−
x0

△
= 0 (

←−
J −1 ↼−x0);

...
↽−−−
xn−1

△
= 0 (

←−
J −1 ↼−−xn−1);

↽−−
xSn
⊕

△
= xn

↽−
xn;

...
↽−−
xS1
⊕

△
= x1

↽−
x1

in
↽−
x0 end)) end

The above formulation, however, does not support nested lambda expressions. The
difficulty in supporting nested lambda expressions, and in particular free variables,

is illustrated by the following example. Consider the function f
△
= λa ((λb λc b) a) 1.

Since f is the identity function, its derivative is the constant function one. Con-
verting f to A-normal form gives:

f
△
= λa let x1

△
= λb let x4

△
= λc b

in x4 end;

x2
△
= x1 a;

x3
△
= x2 1 /*I*/

in x3 end

If we attempt to transform f using the above method we get:

↼−
f

△
= λ↼−a let ↼−x1

△
= λ

↼−
b let ↼−x4

△
= λ↼−c (

↼−
b , (λ

↽−
b

↽−
c)) /*II*/

in (↼−x4 , (λ
↽−
x4 let

↽−
b

△
= 0 (

←−
J −1

↼−
b)

in
↽−
b end)) end;

(↼−x2 , x2)
△
= ↼−x1

↼−a ;

(↼−x3 , x3)
△
= ↼−x2

↼−
1 /*III*/

in (↼−x3 , (λ
↽−
x3 let

↽−
a

△
= 0 (

←−
J −1 ↼−a);

↽−
x1

△
= 0 (

←−
J −1 ↼−x1);

↽−
x2

△
= 0 (

←−
J −1 ↼−x2);

↽−
1 ⊕

△
=x3

↽−
x3; /*IV*/

↽−
a ⊕

△
=x2

↽−
x2

in
↽−
a end)) end

The above code is trivially incorrect, because there are references to unbound vari-

ables
↽−
c ,

↼−
1 , and

↽−
1 in lines II, III, and IV. The free reference to

↼−
1 in line III

results from transforming the constant 1 in line I of the untransformed code for f .

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Reverse-Mode AD in a Functional Framework · 19

We can treat such constants as free references to variables bound in the environ-
ment over which a function is closed. When we transform such a closure, we will
need to transform the variables and values in its environment. This legitimizes the

free reference to
↼−
1 in line III but does not address the free references to

↽−
c and

↽−
1

in lines II and IV. We solve this problem by generating bindings, in the backprop-
agator for a transformed lambda expression, for all of the sensitivity variables that
correspond to free variables in the untransformed lambda expression, that initialize

those sensitivity variables to zeros. This is done for
↽−
c and

↽−
1 in lines V and VI

below:

↼−
f

△
= λ↼−a let ↼−x1

△
= λ

↼−
b let ↼−x4

△
= λ↼−c (

↼−
b , (λ

↽−
b let

↽−
c

△
= 0 (

←−
J −1 ↼−c) /*V*/

in
↽−
c end))

in (↼−x4 , (λ
↽−
x4 let

↽−
b

△
= 0 (

←−
J −1

↼−
b)

in
↽−
b end)) end;

(↼−x2 , x2)
△
= ↼−x1

↼−a ;

(↼−x3 , x3)
△
= ↼−x2

↼−
1

in (↼−x3 , (λ
↽−
x3 let

↽−
a

△
= 0 (

←−
J −1 ↼−a);

↽−
x1

△
= 0 (

←−
J −1 ↼−x1);

↽−
x2

△
= 0 (

←−
J −1 ↼−x2);

↽−
1

△
= 0 (

←−
J −1 ↼−

1); /*VI*/
↽−
1 ⊕

△
=x3

↽−
x3;

↽−
a ⊕

△
=x2

↽−
x2

in
↽−
a end)) end

Now
↼−
f is syntactically correct. Unfortunately, however, it produces the wrong

result. If we apply
↼−
f to

↼−
4 we get

↼−
4 (the correct answer) paired with a backprop-

agator. But if we call that backpropagator on 1 we get 0 when we should get 1,
namely the derivative of f at 4. To see why, we can trace through the evaluation

of the backpropagator. First,
↽−
x3 is bound to 1. Then,

↽−
a ,

↽−
x1,

↽−
x2, and

↽−
1 are

bound to zeros. Then, we apply x3 to 1. Since x3 is bound to λ
↽−
b . . .,

↽−
b is bound

to 1,
↽−
c is bound to a zero, λ

↽−
b . . . returns a zero, and

↽−
1 is incremented by a zero

and remains a zero. Then, we apply x2 to a zero. Since x2 is bound to λ
↽−
x4 . . .,

↽−
x4 is bound to a zero,

↽−
b is bound to a zero, λ

↽−
x4 . . . returns a zero, and

↽−
a is

incremented by a zero and remains a zero. This zero is then returned.
The problem results from the fact that the output of the function λc b in the

untransformed f does not depend on its input. Instead, it depends on the value of
a free variable that is the input to the surrounding function λb λc b. So far, our
backpropagators only propagate sensitivities from function outputs to their inputs.
They do not propagate sensitivities to the environments over which they are closed.

This problem can be solved by making three changes to the above formulation.
First, backpropagators are modified so that instead of having them map output
sensitivities to input sensitivities, they map output sensitivities to pairs containing
both the environment sensitivities and the input sensitivities, as shown in lines VII,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

20 · B. A. Pearlmutter and J. M. Siskind

IX, and XIII below. Environment sensitivities are represented as lists of the sen-
sitivities of all of the free variables. Second, the lines in backpropagators that
correspond to applications in the untransformed function are modified to accumu-
late the paired backpropagator result into the sensitivity of the target paired with
the sensitivity of its argument, as shown in lines X and XI below. Finally, lines are
generated in backpropagators that correspond to nested lambda expressions in the
untransformed function, as shown in lines VIII and XII below:

↼−
f

△
= λ↼−a let ↼−x1

△
= λ

↼−
b let ↼−x4

△
= λ↼−c (

↼−
b , (λ

↽−
b let

↽−
c

△
= 0 (

←−
J −1 ↼−c)

in ([
↽−
b],

↽−
c) end)) /*VII*/

in (↼−x4 , (λ
↽−
x4 let

↽−
b

△
= 0 (

←−
J −1

↼−
b);

[
↽−
b]⊕

△
=

↽−
x4 /*VIII*/

in ([],
↽−
b) end)) end; /*IX*/

(↼−x2 , x2)
△
= ↼−x1

↼−a ;

(↼−x3 , x3)
△
= ↼−x2

↼−
1

in (↼−x3 , (λ
↽−
x3 let

↽−
a

△
= 0 (

←−
J −1 ↼−a);

↽−
x1

△
= 0 (

←−
J −1 ↼−x1);

↽−
x2

△
= 0 (

←−
J −1 ↼−x2);

↽−
1

△
= 0 (

←−
J −1 ↼−

1);

(
↽−
x2,

↽−
1)⊕

△
= x3

↽−
x3; /*X*/

(
↽−
x1,

↽−
a)⊕

△
= x2

↽−
x2; /*XI*/

[]⊕
△
=

↽−
x1 /*XII*/

in ([],
↽−
a) end)) end /*XIII*/

To see how this works, we trace through the evaluation of this new backpropagator.

First,
↽−
x3 is bound to 1. Then,

↽−
a ,

↽−
x1,

↽−
x2, and

↽−
1 are bound to zeros. Then, we

apply x3 to 1. Since x3 is bound to λ
↽−
b . . .,

↽−
b is bound to 1 and

↽−
c is bound to a

zero. So far, the evaluation is the same as before. Now we see the first difference.

The function λ
↽−
b . . . returns [1] paired with a zero,

↽−
x2 is incremented by [1] to

become [1], and
↽−
1 is incremented by a zero and remains a zero. Then, we apply x2

to [1]. Since x2 is bound to λ
↽−
x4 . . .,

↽−
x4 is bound to [1] and

↽−
b is bound to a

zero. Then [
↽−
b] is incremented by [1]. This increments

↽−
b by 1, allowing λ

↽−
x4 . . .

to return [] paired with 1. The variable
↽−
x1 is then incremented by [] and

↽−
a is

incremented by 1 to become 1. This 1 is then returned.
Several subtle issues must be addressed to flesh out this method. First, lambda

expressions may have multiple free variables. Thus the lists of sensitivities to these
variables, as in lines VII, VIII, IX, XII, and XIII above, could contain multiple
values. Since these lists of sensitivities must conform to be added by ⊕, we need
to adopt a canonical order to the elements of these lists. This is done by assuming
a total order on all variables. Second, while the input to this transformation is an
α-converted expression in A-normal form, the output is not. To allow repeated ap-
plication of this transformation, the output of the transformation must subsequently
be α-converted and converted to A-normal form. Such repeated transformation can

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Reverse-Mode AD in a Functional Framework · 21

yield multiply-transformed variables like
↼−↼−x that are bound to multiply-transformed

values. Third, a transformed function can have free variables that do not correspond
to free variables in the untransformed function. This is because the transformation
introduces references to functions like 0 and

←−
J −1 that may not be used in the

untransformed function. (And even if they were, they would be transformed, but
the transformed function needs to access the untransformed variants as well.) Thus
the environment sensitivity of a transformed function will be of a different shape
than the environment sensitivity of its corresponding untransformed function. For
reasons beyond the scope of this paper, we wish the environment sensitivity of a
transformed function to be of the same shape as the environment sensitivity of its
corresponding untransformed function. To accomplish this, we adopt the conven-
tion that environment sensitivities of potentially multiply-transformed functions
only contain entries that correspond to free variables in the original completely-
untransformed function. We refer to such variables as base free variables.

4. THE TECHNICAL DETAILS OF OUR METHOD

Since our method involves a non-local program transformation, we wish to make this

transformation available as a first-class programming-language function
←−
J . This

allows application of this transformation by programs within the language, rather

than by a preprocessor. Since
←−
J must have the ability to reflectively access and

transform expressions associated with closures, it is not possible to implement
←−
J as

code within a language that lacks the capacity for such reflection. In such languages,
←−
J must be added to the language implementation as a new primitive. While it is
possible to do this for an existing implementation of an existing language, so long as
that implementation internally provides the ability for such reflection, to simplify
presentation and experimentation, we formulate the ideas in this paper within a
minimalist functional language called vlad5 and a minimalist implementation of
vlad called Stalin∇ (pronounced Stalingrad).6 vlad and Stalin∇ support both
forward-mode and reverse-mode AD, but in this paper we only describe reverse
mode. vlad and Stalin∇, however, are simply expedient vehicles for exposition

and research. The
←−
J primitive could be added to an existing implementation

of an existing language, albeit with considerably greater effort, so long as that
implementation internally provides the ability for the necessary reflection.

vlad is similar to Scheme. The important differences are summarized below:

—Only functional (side-effect free) constructs are supported.

—The only Scheme data types supported are the empty list, Booleans, real num-
bers, pairs, and functions that take one argument and return one result. This
is augmented with the machinery needed to support reverse-mode AD: reverse-
tagged values and several novel primitive functions described below. This ma-
chinery augments the space of Scheme values with reverse values, as described
below.

5vlad is an acronym for Functional Language for AD with a voiced F.
6The source code for Stalin∇ and all of the examples from this paper are available from http:

//www.bcl.hamilton.ie/∼qobi/stalingrad/software/toplas2006.tgz.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

22 · B. A. Pearlmutter and J. M. Siskind

—Since all functions, including primitives, take one argument, those that naturally
take multiple arguments (except for cons and list) take those arguments as
tuples constructed from pairs.

—The cons and list constructs are syntax that expand into curried applications
of the function Cons, as described below.

—The syntax of lambda expressions, and expressions, such as let, that expand
into lambda expressions, is extended to support destructuring of pairs, tuples,
lists, and reverse values. Multiple-argument lambda expressions and applications
incur implicit structuring and destructuring.

While Stalin∇ accepts vlad programs in Scheme S-expression notation, in this
paper we formulate vlad programs in a more traditional mathematical notation
that, inter alia, uses infix applications. While Stalin∇ is implemented in Scheme,
not vlad, in this paper we use the same mathematical notation both when writing
vlad programs and when specifying the implementation of vlad. We often have
functions in the vlad language that correspond to functions in the implementation.
The distinction will be clear from context.

A preprocessor translates vlad programs into the pure lambda calculus. Stan-
dard Scheme syntax is expanded using the macros from Kelsey et al. [1998]. Top-
level definitions are translated into uses of letrec. While Stalin∇ implements
letrec natively, for expository purposes, in this paper, we assume that letrec is
implemented in the pure lambda calculus in terms of the Y combinator. Struc-
turing and destructuring is made explicit. While Stalin∇ implements pairs and
Booleans natively, for expository purposes, in this paper, we assume that pairs and
Booleans are implemented using the following encoding:

Car x
△
= x λx1 λx2 x1

Cdr x
△
= x λx1 λx2 x2

Cons x1 x2 x
△
= x x1 x2

if e1 then e2 else e3 fi ; (e1 ((λx e2), (λx e3))) [] where x is fresh

e1, e2 ; Cons e1 e2

where true and false are represented as Car and Cdr respectively. (The primi-
tives must be aware of the representation of pairs and Booleans.) Finally, quoted
constants are replaced with references to variables in the top-level environment.

Given a set X of base variables, a variable x is either a base variable or a tagged
variable. A tagged variable, in turn, is either a reverse variable ↼−x , a sensitivity

variable
↽−
x, or a backpropagator variable x. The input program must be formulated

using only base variables. The reverse transformation will produce expressions that
contain tagged variables. Repeated reverse transformation can yield variables with

stacked tags, like
↼−↼−x . Variable tagging allows the reverse transformation to generate

new variables that do not clash with existing variables and allows a bidirectional
correspondence between tagged and untagged variants of a variable.

We assume a total order ≺ on all variables. This order obeys a number of

conditions: ↼−x1 ≺
↼−x2 , x1 ≺

↼−x2 , ↼−x1 ≺ x2,
↽−
x1 ≺

↽−
x2, x1 ≺

↽−
x2,

↽−
x1 ≺ x2, x1 ≺ x2,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Reverse-Mode AD in a Functional Framework · 23

x1 ≺ x2, and x1 ≺ x2, if x1 ≺ x2, and x ≺ ↼−x ≺
↽−
x ≺ x. This will allow

unambiguous construction of a list to represent the sensitivity of a function in
terms of its free variables.

An expression e is either a variable access expression x, an application (e1 e2),
or a lambda expression (λx e). We often eliminate parenthesis around applications
and lambda expressions, taking application to associate to the left and lambda
expressions to extend as far right as possible.

Tags on the argument variable x of a lambda expression allow one to determine
whether or not that lambda expression has been transformed, and if so, how many
times it has been transformed. We will use this ability, below, to repeatedly un-
transform a transformed lambda expression to determine the free variables in the
original untransformed lambda expression. We also use this ability, below, to con-
struct values that are transformed the same number of times as a correspondingly
transformed lambda expression.

We assume that the bodies of all lambda expressions are converted to A-normal
form. An expression in A-normal form has the form:

let x1
△
= e1; . . . ;xn

△
= en in xn end

where each ei is either xj , (xj xk), or (λx e), where e is in A-normal form. We take
let to be shorthand for an implementation in the pure lambda calculus in terms of
applications and lambda expressions:

let x1
△
= e1;x2

△
= e2; . . . ;xn

△
= en in e end

; let x1
△
= e1 in let x2

△
= e2; . . . ;xn

△
= en in e end end

let x1
△
= e1 in e end ; ((λx1 e) e1)

We further assume that all lambda expressions are α-converted.
We use F e to denote the set of free variables of an expression e:

F x ≡ {x}

F (e1 e2) ≡ (F e1) ∪ (F e2)

F (λx e) ≡ (F e) \ {x}

We use B e to denote the set of free variables in the lambda expression e that
correspond to free variables in the original untransformed lambda expression that
was (potentially) transformed (multiple times) to yield e:

B (λx e) ≡ F (λx e) when x ∈ X

B e ≡ {} where 〈σ, e〉 =
↼−
t

B
↼−−
λx e ≡ {

↼−
x′ |x′ ∈ B (λx e)}

The notation 〈σ, e〉 and
↼−
t used in the second definition clause above and the

notation
↼−−
λx e used in the third definition clause above will be defined below. We

refer to B e as the base free variables of e. The second definition clause above
indicates that we take a lambda expression produced by transforming a primitive t

as having no base free variables.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

24 · B. A. Pearlmutter and J. M. Siskind

An environment σ is a finite map from variables to values. We use {} to denote
the empty environment and use σ0 to denote the top-level environment that contains
the standard basis. A closure is a pair 〈σ, e〉, where e is a lambda expression and the
domain of σ includes F e. A value v is either the empty list [], a real number r,
a reverse-tagged value ↼−v (where v is [], a real, or a reverse-tagged value), a
unary real primitive u, a binary real primitive b, a unary Boolean primitive p,

a binary Boolean primitive q, an AD primitive 0, ⊕,
←−
J , or

←−
J −1, or a closure.

Each language primitive u corresponds to some function R → R, each language
primitive b corresponds to some function R → R → R, each language primitive p

corresponds to some unary predicate over values, and each language primitive q

corresponds to some binary relation over pairs of values. We use t to denote any
primitive and refer to closures and primitives collectively as functions.

We refer to a result of invoking
←−
J (defined below) as a reverse (transformed)

value. Recall that tagged argument variables of lambda expressions indicate that
those lambda expressions have been transformed. This allows one to determine
whether a closure has been transformed. Value tags are used to tag non-closure val-
ues as having been transformed. Value tags stack to indicate multiply-transformed
values, much like variable tags stack. While only non-closure values have explicit
value tags, we can view transformed closure values as having implicit value tags
corresponding to the tags on the argument variables of their lambda expression.
This allows correct programs to obey a simple invariant: in the absence of sensi-
tivity and backpropagator tags, the tag stack of a variable must be a prefix of the
(possibly implicit) tag stack of a value to which that variable is bound.

We use (v1, v2) as shorthand for the encoded pair:

〈{(x1 7→ v1), (x2 7→ v2)}, (λx3 x3 x1 x2)〉

We often eliminate parentheses around pairs, taking comma to associate to the
right. We use [v1, . . . , vl] to denote a list. It is shorthand for (v1, . . . , vl, []). To
maintain the above invariant, we need to introduce transformed pairs and lists. We
use (v1,x v2), []x, and [v1, . . . , vl]x to denote pairs, empty lists, and lists that have
been transformed according to the tag stack on the variable x:

(v1,x v2) ≡ (v1, v2) when x ∈ X

((
←−
J v1),↼−x (

←−
J v2)) ≡

←−
J (v1,x v2)

[]x ≡ [] when x ∈ X

[]↼−x ≡
↼−
[]x

[v1, . . . , vl]x ≡ (v1,x . . . ,x vl,x []x)

The implementation of
←−
J will be defined below. As will be illustrated below, the

transformation performed by
←−
J is invertible. Furthermore, pair and list formation,

both in the base case, as well as in the transformed case, are invertible. Thus we

often use pair and list formation, as well as application of
←−
J , to indicate destruc-

turing, both when we write vlad expressions and when we specify functions that
implement vlad.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Reverse-Mode AD in a Functional Framework · 25

We define the notion of conformance between two values as follows. The empty
list conforms to itself. Two reals are conformant. A reverse-tagged value ↼−v1 con-
forms to another reverse-tagged value ↼−v2 if v1 conforms to v2. A primitive conforms
to itself. Two environments are conformant if they have the same domains and both
environments map each given variable to conformant values. Two closures are con-
formant if their environments are conformant and they have equivalent expressions.
For our purposes, it suffices to take two expressions to be equivalent if they arise
from the same program text, possibly via various transformations. This licenses
approximating contextual equivalence, the notion that two expression evaluate to
equal values for all environments, with a suitable decidable conservative approxi-
mation.

We define an addition operation ⊕ between two conformant values as follows:

[] ⊕ [] ≡ []

r1 ⊕ r2 ≡ r1 + r2

↼−v1 ⊕
↼−v2 ≡

↼−−−−
v1 ⊕ v2 where ↼−v1 and ↼−v2 are reverse-tagged values

t ⊕ t ≡ t

(σ1 ⊕ σ2) x ≡ (σ1 x) ⊕ (σ2 x)

〈σ1, e〉 ⊕ 〈σ2, e〉 ≡ 〈(σ1 ⊕ σ2), e〉

We define the notion of match between a value and a corresponding sensitivity as
follows. The empty list matches itself. Two reals match. A reverse-tagged value ↼−v1

matches another reverse-tagged value ↼−v2 if v1 matches v2. A primitive matches the
empty list. A closure 〈σ, (λx e)〉 matches a list [v1, . . . , vl]x when x′

1, . . . , x
′

l are the
elements of B (λx e) ordered by ≺ and each σ x′

i matches vi.

A zero is either [], 0, or a closure whose environment maps every variable to a
(possibly different) zero. Every value has exactly one matching zero. We use 0 v

to denote the zero that matches v:

0 [] ≡ []

0 r ≡ 0

0 ↼−v ≡
↼−
0 v

where ↼−v is a reverse-tagged value

0 t ≡ []

0 〈σ, (λx e)〉 ≡ [(0 (σ x′
1)), . . . , (0 (σ x′

l))]x
where x′

1, . . . , x
′

l are the elements of
B (λx e) ordered by ≺

To define the reverse transform, we first define the following transformations on

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

26 · B. A. Pearlmutter and J. M. Siskind

let bindings:

φ{xi
△
= xj} ≡ ↼−xi

△
= ↼−xj

φ{xi
△
= xj xk} ≡ (↼−xi , xi)

△
= ↼−xj

↼−xk

φ{xi
△
= λx e} ≡ ↼−xi

△
=

↼−−
λx e

ρ{xi
△
= xj} ≡

↽−
xj ⊕

△
=

↽−
xi

ρ{xi
△
= xj xk} ≡ (

↽−
xj ,

↽−
xk)⊕

△
= xj

↽−
xi

ρ{xi
△
= λx e} ≡ [

↽−
x′

1, . . . ,
↽−
x′

l]x⊕
△
=

↽−
xi where x′

1, . . . , x
′

l are the elements of
B (λx e) ordered by ≺

We use φ to denote the forward-phase transformation and ρ to denote the reverse-
phase transformation. Care must be taken in the second clause of the definition of ρ

above to deal with the case where j = k. This corresponds to the case where Ri = Si

in Section 2. In this case, both components of the pair returned by xj

↽−
xi must be

accumulated into the same variable.
Given these, the reverse transform ↼−e is:

↼−−−−−−−−−−−
λx0 let x1

△
= e1;

...

xn
△
= en

in xn end

≡ λ↼−x0 let φ{x1
△
= e1};

...

φ{xn
△
= en}

in (↼−xn, (λ
↽−
xn let

↽−
x′

1

△
= 0 (

←−
J −1

↼−
x′

1);
...

↽−
x′

l

△
= 0 (

←−
J −1

↼−
x′

l);
↽−
x0

△
= 0 (

←−
J −1 ↼−x0);

...
↽−−−
xn−1

△
= 0 (

←−
J −1 ↼−−xn−1);

ρ{xn
△
= en};

...

ρ{x1
△
= e1}

in ([
↽−
x′

1, . . . ,
↽−
x′

l]x0
,
↽−
x0) end)) end

where x′
1, . . . , x

′

l are the elements of B e ordered by ≺ and the reverse phase

of ↼−e does not include any accumulation into sensitivity variables
↽−
x whenever

x 6∈ {x0} ∪ (B e). The result of the above transformation is converted to A-normal
form and then α-converted. Note that this transformation is invertible. This li-
censes the use of

↼−−
λx e to denote argument destructuring in the definition of B.

Using the above machinery, the primitives
←−
J and

←−
J −1 can be implemented as

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Reverse-Mode AD in a Functional Framework · 27

follows:
←−
J [] ≡

↼−
[]

←−
J r ≡ ↼−r

←−
J ↼−v ≡

↼−↼−v where ↼−v is a reverse-tagged value
←−
J t ≡

↼−
t

←−
J 〈σ, e〉 ≡ 〈↼−σ ,↼−e 〉 where ↼−σ ↼−x =

←−
J (σ x), for x ∈ (F e),

and ↼−σ x = σ0 x, for x ∈ (F ↼−e) \ (F e)

←−
J −1 ↼−v ≡ v where ↼−v is a reverse-tagged value
←−
J −1 ↼−

t ≡ t

←−
J −1 〈↼−σ ,↼−e 〉 ≡ 〈σ, e〉 where σ x =

←−
J −1 (↼−σ ↼−x), for x ∈ F e

In the above,
↼−
t denotes the transformation of the corresponding primitive t. These

transformations will be defined below. Also note that
←−
J −1 is the inverse of

←−
J . This

licenses the use of
←−
J to denote argument destructuring in the definition of (v1,x v2),

and also in vlad expressions.
We use σ[x 7→ v] to denote the map that agrees with σ on all arguments except

that it maps x to v. We have the following standard ‘eval/apply’ evaluator:

E σ x ≡ σ x

E σ (e1 e2) ≡ A (E σ e1) (E σ e1)
E σ (λx e) ≡ 〈σ, (λx e)〉

A u v ≡ u v

A b (v1, v2) ≡ b v1 v2

A p v ≡ p v

A q (v1, v2) ≡ q v1 v2

A 0 v ≡ 0 v

A ⊕ (v1, v2) ≡ v1 ⊕ v2

A
←−
J v ≡

←−
J v

A
←−
J −1 v ≡

←−
J −1 v

A 〈σ, (λx e)〉 v ≡ E σ[x 7→ v] e

All that remains is to show how to transform the primitives t into
↼−
t . We first

do that for the primitives u, b, p, and q as follows:

↼−u ≡ E σ0 λ(
←−
J x) ((

←−
J (u x)), (λ

↽−
y ([], ((D u x)×

↽−
y))))

↼−
b ≡ E σ0 λ(

←−
J (x1, x2))

((
←−
J (b (x1, x2))),

(λ
↽−
y ([], (((D1 b (x1, x2))×

↽−
y), ((D2 b (x1, x2))×

↽−
y)))))

↼−p ≡ E σ0 λ(
←−
J x) ((

←−
J (p x)), (λ

↽−
y ([], (0 x))))

↼−q ≡ E σ0 λ(
←−
J (x1, x2)) ((

←−
J (q (x1, x2))), (λ

↽−
y ([], ((0 x1), (0 x2)))))

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

28 · B. A. Pearlmutter and J. M. Siskind

In the above, D u x denotes a vlad expression that evaluates the derivative of u

at x and D1 b (x1, x2) and D2 b (x1, x2) denote vlad expressions that evaluate the
partial derivatives of b, with respect to its first and second arguments, at (x1, x2).

Note that since
↼−
t denotes a (transformed) value, we generate such a value, i.e., a

closure, by evaluating a lambda expression in the top-level environment.
Closure now requires transformations of the AD primitives:

↼−
0 ≡ E σ0 λ(

←−
J x) ((

←−
J (0 x)), (λ

↽−
y ([], (0 x))))

↼−
⊕ ≡ E σ0 λ(

←−
J (x1, x2)) ((

←−
J (x1 ⊕ x2)), (λ

↽−
y ([], (

↽−
y ,

↽−
y))))

↼−←−
J ≡ E σ0 λ(

←−
J x) ((

←−
J (
←−
J x)), (λ

↽−
y ([], (

←−
J −1 ↽−

y))))
↼−−←−
J −1 ≡ E σ0 λ(

←−
J x) ((

←−
J (
←−
J −1 x)), (λ

↽−
y ([], (

←−
J

↽−
y))))

Two subtle issues remain to be addressed. First, Boolean primitives p and q

might take constant time even when given input of arbitrary size. Examples in-
clude the Scheme type predicates like Real?. Transformations of these predicates,

however, involve applying the inverse transformation
←−
J −1 to their input. The im-

plementation of
←−
J −1 nominally traverses its input. The commensurate increase

in temporal complexity can be avoided by taking the implementations of the AD

primitives 0, ⊕,
←−
J , and

←−
J −1 to be lazy.

Second, standard implementations of languages like Scheme allow structure shar-
ing. This allows code like:

let x1
△
= (0, 0);

x2
△
= (x1, x1);

...

xn
△
= (xn−1, xn−1)

in xn end

to produce a linear-sized representation of an exponentially-sized value in linear

time. AD primitives, like
←−
J , that traverse their input can nominally yield output

whose size is exponential in the size of the input. This can be avoided by memoizing

the implementations of the AD primitives 0, ⊕,
←−
J , and

←−
J −1, when applied to

nonscalar input, to preserve the structure sharing.
The above two cases were the only opportunities in the transformed code for

the temporal complexity to exceed that of the primal computation by more than a
constant factor, as can be verified be a tedious case analysis of every transforma-
tion rule above. For this reason, with the above provisos concerning memoization

and lazy computation of the AD primitives, if we let (y, y) =
←−
J f x then the

number of primitive arithmetic operations performed while evaluating
←−
J f x is the

same as when evaluating f x, and the number of primitive operations performed

while evaluating
↽−
x = y

↽−
y is also the same, up to a small constant factor. This

was confirmed for a small suite of benchmark problems, included in the distribu-
tion, by instrumenting the Stalin∇ implementation to count primitive arithmetic
operations.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Reverse-Mode AD in a Functional Framework · 29

5. EXAMPLES OF THE UTILITY OF OUR METHOD

As mentioned in the introduction, to achieve closure, our method solves two tech-
nical problems:

—It supports transformation of nested lambda expressions, particularly those with
free-variable references. Moreover, it can handle the case where reverse-mode
AD is applied to a function f that takes an argument x and that, in turn, applies
reverse-mode AD to a function g, nested inside f , that has a free reference to x,
i.e., the argument to the surrounding function f .

—It supports application of
←−
J to itself.

We present two different examples, both of which illustrate the utility of our solution
to these two technical problems. These examples run in our prototype implementa-
tion and are included in the distribution. We know of no other approach to reverse-
mode AD that can handle these examples. Furthermore, our distribution contains
benchmark scripts that use the metering facility of our prototype implementation
to illustrate that our approach has the correct temporal complexity properties.

As a first example, consider a continuous two-person zero-sum game. Unlike
conventional discrete games, where the two players select from finite sets of m and n

strategies and the payoff is specified by an m × n matrix, our players select from
multidimensional continuous strategies in R

m and R
n and the payoff is specified

by a function R
m × R

n → R. We wish to find the optimal minimax strategy, i.e.,
a saddle point in the payoff function. In traditional notation, this corresponds to
computing minx maxy f(x, y).

The gradient of a function can be computed with:

∇ f x
△
= Cdr ((Cdr ((

←−
J f) (

←−
J x))) 1)

We then construct UnivariateArgmin (f, ǫ), a univariate minimizer based on the
golden-section algorithm using a translation of the mnbrak and golden functions
from Press et al. [1992] into vlad. We omit the translation for brevity. We then
construct a multivariate minimizer based on gradient descent:

Argmin (f, x0, ǫ)
△
=

let g
△
= ∇ f x0

in if ||g|| ≤ ǫ

then x0

else Argmin

(f,

(x0 + (UnivariateArgmin ((λk f (x0 + k × g)), ǫ))× g),
ǫ) fi end

using the univariate minimizer to perform line search. From this, we can construct:

Argmax (f, x0, ǫ)
△
= Argmin ((λx − (f x)), x0, ǫ)

Max (f, x0, ǫ)
△
= f (Argmax (f, x0, ǫ))

Now let us construct a simple payoff function:

Payoff ([s, t], [u, v])
△
= s2 + t2 − u2 − v2

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

30 · B. A. Pearlmutter and J. M. Siskind

The optimal strategy (x∗, y∗) = ([0, 0], [0, 0]) can be found using:

let x∗ △
= Argmin ((λx Max ((λy Payoff (x, y)), y0, ǫ)), x0, ǫ)

in (x∗, (Argmax ((λy Payoff (x∗, y)), y0, ǫ))) end

Note that finding x∗ involves taking the derivative of λx . . . which in turn, involves
taking the second derivative of λy Also note that λy . . . has a free reference
to x, which is the argument to λx Finally note that λx . . . calls Max, which

calls Argmax, which calls Argmin, which calls ∇, which calls
←−
J . Since finding x∗

involves taking the derivative of λx . . ., this ultimately involves applying
←−
J to

itself.
As a second example, consider the computation and use of Hessians. A common

misconception is that numerical methods based on Hessians are inefficient. While
it is true that explicitly storing a Hessian matrix takes space that is quadratic in
the input size, and thus explicitly computing a Hessian matrix takes time that is
at least quadratic in the input size, one can compute the product of a Hessian
matrix and an arbitrary vector with the same temporal complexity as computing
the original function [Christianson, 1992; Werbos, 1992, Section 10.7; Pearlmutter,
1994]. We do so now using double application of reverse-mode AD. Let H denote
a higher-order function that maps a function f : R

n → R to a function of type
R

n → R
n×n that computes the Hessian matrix of f at a real vector. The quantity

(H f x)× v can be computed as:

(Cdr ((Cdr ((
←−
J (λx (Cdr ((Cdr ((

←−
J f) (

←−
J x))) 1)) · v)) (

←−
J x))) 1))

where · denotes vector dot product. If we take f [x, y]
△
= 2x2 + 3xy + 4y2 then

(H f [3, 4])× [7, 8] = [52, 85].
Note that computing the Hessian obviously involves taking second derivatives,

which in our case involves transforming the result of a transformation. Also note

that λx . . . has a free reference to v. Finally note that the outer
←−
J transforms

λx . . ., which calls
←−
J . This ultimately involves applying

←−
J to itself.

6. PRIOR WORK

The numeric part of the primal computation can be thought of as a data-flow graph
leading from input real numbers to output real numbers. We can concentrate
on this data-flow graph, and ignore all other parts of the computation as mere
scaffolding. In this context, reverse-mode AD refers to a particular construction
in which the primal data-flow graph is transformed to construct an adjoint graph
that computes the sensitivity values. In the adjoint, the direction of the data-flow
edges are reversed; addition nodes are replaced by fanout nodes; fanout nodes are
replaced by addition nodes; and other nodes are replaced by multiplication by their
linearizations. The main constructions of this paper can, in this context, be viewed
as a method for constructing scaffolding that supports this adjoint computation.

Reverse-mode AD entails postpending the reverse-phase computation to the
forward-phase computation in reverse order. This can be performed on a single
(leaf-node) function by a source-to-source transformation [Speelpenning, 1980]. It
is difficult to properly perform the reverse-phase computation in the presence of

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Reverse-Mode AD in a Functional Framework · 31

function calls, because of the additional machinery necessary to save the interme-
diate forward-phase values and call trace. One common approach to doing this
is to eschew source-to-source transformation in favor of recording a ‘tape’ of the
forward-phase computation and transforming and replaying this tape to perform
the reverse phase [Griewank et al., 1996].

Tapenade [Hascoët and Pascual, 2004] extends the source-to-source transforma-
tion approach to first-order code that contains function calls by transforming each
function in the original code into a pair of functions: one for the forward phase, and
one for the reverse phase. The forward-phase function stores intermediate values
on a tape for use during the reverse phase. Since the call graph of the original
first-order code is static and determinable at compile time, the call graph of the
reverse phase is also static. The tape need therefore only store the intermediate
forward-phase values, and not the call trace. When applied to first-order code, the
present method, with suitable standard compilation techniques, results in precisely
the same transformation. Thus the present method is a strict generalization of the
techniques used by Tapenade to higher-order code in the presence of first-class
AD operators. Furthermore, because it represents the tape as closures, the present
method exposes that tape to standard compilation techniques even in the first-order
case.

One derivative-taking method intended to perform reverse-mode AD in Haskell

is available [Karczmarczuk, 1998a, 2000a,b, 2001a]. In the absence of nesting, that
method does calculate correct gradients. However it uses a computation graph
different from that of reverse-mode AD. The method can be viewed as an imple-
mentation of forward-mode AD which calculates gradients by pairing each primal
value in the n-dimensional input vector with a vector of n perturbation values,
taking the perturbations of the i-th component of the input vector to be a vector
of zeros with a single 1 in the i-th position. This would impose an overhead of
O(n) in time as compared with the original computation, while reverse-mode AD
imposes O(1) overhead. However the method does not construct the usual forward-
mode AD computation graph, due to the way perturbations are represented: a real

perturbation
−⇁
v is represented as (λz

−⇁
v × z). We will refer to such values as R̃

numbers. Since R̃ numbers are used only to represent perturbations, only two
arithmetic operations need be defined:

(x : R) ×̃ (y : R̃)
△
= λz y (x× z) (x : R̃) +̃ (y : R̃)

△
= λz (x z) + (y z)

These defer all arithmetic until an R̃ number is applied to the R number 1. Arith-
metic is overloaded to carry along vectors of these perturbations. Using the notation
of Section 2:

−⇀u (x,
−⇁
x)

△
= ((u x), (Map (λ

−⇁
x (D u x) ×̃

−⇁
x)
−⇁
x))

−⇀
b ((x1,

−⇁
x1), (x2,

−⇁
x2))

△
= ((b (x1, x2)),

(Map2 (λ(
−⇁
x1 ,
−⇁
x2) (D1 b (x1, x2)) ×̃

−⇁
x1 +̃

(D2 b (x1, x2)) ×̃
−⇁
x2)

(
−⇁
x1,
−⇁
x2)))

Fan-in of R̃ values causes +̃ to be used, resulting in the same R̃ number being called

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

32 · B. A. Pearlmutter and J. M. Siskind

f

�

�

�

�

�

�

�

�

�

�

�

�

�

�

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

�

�

�

�

�

�

�

�

�

�

�

�

�

�

?>=<89:;f2

x2

 A
AA

AA
AA

prior
computation

x0 // ?>=<89:;f1
x1 //• fanout

x1.2

AA��������

x1.3
��<

<<
<<

<<
< ?>=<89:;b

x4 // subsequent
computation

?>=<89:;f3

x3

>>}}}}}}}

f

�

�

�

�

�

�

�

�

�

�

�

�

�

�

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

�

�

�

�

�

�

�

�

�

�

�

�

�

�

?>=<89:;f2

↽−
x2

__@@@@@@@
prior

computation

↽−
x0oo ?>=<89:;f1

↽−
x1oo ⊕

↽−−−
x1.2

����
��

��
��

↽−−−
x1.3

^^<<<<<<<<

?>=<89:;
b

↽−
x4oo subsequent

computation

?>=<89:;f3

↽−
x3��~~

~~
~~

~

Fig. 5. With our method f (shown diagrammatically in the lower panel), the backpropagator

for f
△
= λx0 let x1

△
= f1 x0 in b ((f2 x1), (f3 x1)) end (shown diagrammatically in the upper

panel), calls f2 and f3, the backpropagators for f2 and f3, with sensitivities
↽−
x2 and

↽−
x3, yielding

↽−−−
x1.2 = f2

↽−
x2 and

↽−−−
x1.3 = f3

↽−
x3, sums the results to yield

↽−
x1 =

↽−−−
x1.2⊕

↽−−−
x1.3, the sensitivity of

the output of f1, where the addition in the reverse-phase f of the transformed
↼−
f is needed because

of the fanout of x1 in the original f , and calculates the sensitivity
↽−
x0 = f1

↽−
x1 of the input to f ,

thus calling f1 only once. Note that (f1

↽−−−
x1.2) ⊕ (f1

↽−−−
x1.3) = f1 (

↽−−−
x1.2 ⊕

↽−−−
x1.3) because f1 is

linear. (All backpropagators are linear as they are simply multiplication by the transpose of the

Jacobian matrix.) Thus if f returned (f1

↽−−−
x1.2)⊕ (f1

↽−−−
x1.3) instead of f1 (

↽−−−
x1.2⊕

↽−−−
x1.3) it would

be returning the correct value, but could entail additional computation. Fanout in the original
computation causing addition in the reverse-phase computation is the key insight of reverse-mode

AD. Here, the fanout of x1 does not become apparent until b is invoked. The need to detect
and properly transform fanout, in the presence of closures and with the possibility of multiple
invocation of closures, is the reason for much of the machinery of the present method.

repeatedly with different arguments, which can increase the number of primitive
arithmetic operations performed.

7. DISCUSSION

The primary technical difficulty we have solved is proper conversion of fanout in the
primal to addition in the adjoint graph, in the face of closures and environments.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Reverse-Mode AD in a Functional Framework · 33

The need for this bookkeeping is shown diagrammatically in Figure 5. If a pro-
gram was constructed solely out of unary functions, it could not have fanout and
thus would not be subject to these issues. Thus it may seem paradoxical, at first,
that so much bookkeeping is needed in vlad to handle fanout, since like ml, vlad

supports only unary functions and unary primitives. The paradox is resolved by
noticing that function application itself is a binary function! This is manifest in our
method for supporting free variables: having backpropagators return an environ-
ment sensitivity paired with an input sensitivity and accumulating the environment
sensitivity into the sensitivity of the target of an application and the input sensi-
tivity into the sensitivity of the argument of that application. vlad, like ml, uses
tupling and currying to implement functions that take multiple arguments. With
encoded pairs, tupling, in turn, reduces to currying, which in turn, requires free
variables.

It is also interesting to note that we have not eliminated the ‘tape’ from reverse-
mode AD. That would be impossible, because the tape stores intermediate values
computed during the forward phase that are needed during the reverse phase. What
we have done is to change the representation of the tape from an interpreted (or run-
time compiled) data structure to pre-compiled closures. The traditional tape stores
not only values but also operations on those values. The dichotomy between stor-
ing values and operations is reflected in our method by the fact that closures have
environments to store values and expressions to store operations. Herein lies the
difference: multiple closures with different environments can share the same expres-
sion. Using closures to represent the tape allows factoring out common sequences
of operations performed on different values. This representation also exposes the

tape to the compiler and to other general-purpose mechanisms, including the
←−
J

operator itself.

8. CONCLUSION

We have shown a novel method for implementing reverse-mode AD in a functional
framework. Our method exhibits three important closure properties:

(1) It applies to any lambda-calculus expression, including those with free variables.

(2) The transformation of a lambda-calculus expression is itself a lambda-calculus
expression, allowing repeated application to compute higher-order derivatives.

(3) The temporal complexity of a function is preserved under transformation.

Traditional implementations of reverse-mode AD exhibit 3 but not 1 and 2.
Our method involves a non-local program transformation, implemented by a

novel first-class programming-language primitive
←−
J , rather than a local transfor-

mation, implemented by overloading. This allows application of the reverse-mode
AD transformation by programs within the language, rather than by a preprocessor.
To achieve closure, we solved two technical problems: supporting transformation

of nested lambda expressions with free-variable references, and application of
←−
J to

itself. We have illustrated the utility of the solution to these two technical prob-
lems with two practical examples, namely finding saddle points and computing
Hessian-vector products.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

34 · B. A. Pearlmutter and J. M. Siskind

REFERENCES

Appel, A. W. 1998. SSA is functional programming. ACM SIGPLAN No-

tices 33, 4 (Apr.), 17–20.

Christianson, B. 1992. Automatic Hessians by reverse accumulation. IMA J. of

Numerical Analysis 12, 135–150.

Corliss, G., Faure, C., Griewank, A., Hascoët, L., and Naumann, U. 2001.
Automatic Differentiation: From Simulation to Optimization. Springer-Verlag,
New York, NY.

Griewank, A. 2000. Evaluating Derivatives: Principles and Techniques of Algo-

rithmic Differentiation. Number 19 in Frontiers in Applied Mathematics. SIAM.

Griewank, A., Juedes, D., and Utke, J. 1996. ADOL-C, a package for the
automatic differentiation of algorithms written in C/C++. ACM Trans. Math.

Software 22, 2, 131–167.

Hascoët, L. and Pascual, V. 2004. TAPENADE 2.1 user’s guide. Rapport
technique 300, INRIA, Sophia Antipolis.

Karczmarczuk, J. 1998a. Functional differentiation of computer programs. In
Proceedings of the III ACM SIGPLAN International Conference on Functional

Programming. Baltimore, MD, 195–203.

Karczmarczuk, J. 1998b. Lazy differential algebra and its applications. In Work-

shop, III International Summer School on Advanced Functional Programming.
Braga, Portugal.

Karczmarczuk, J. 1999. Functional coding of differential forms. In Scottish

Workshop on FP.

Karczmarczuk, J. 2000a. Adjoint codes in functional framework.

Karczmarczuk, J. 2000b. Lazy time reversal, and automatic differentiation.

Karczmarczuk, J. 2001a. Calcul des adjoints et programmation paresseuse.

Karczmarczuk, J. 2001b. Functional differentiation of computer programs.
Higher-Order and Symbolic Computation 14, 35–57.

Kedem, G. 1980. Automatic differentiation of computer programs. ACM Trans.

on Mathematical Software 6, 2, 150–65.

Kelsey, R., Clinger, W., and Rees, J. 1998. Revised5 report on the algorithmic
language Scheme. Higher-Order and Symbolic Computation 11, 1 (Sept.), 7–105.

Kelsey, R. A. 1995. A correspondence between continuation passing style and
static single assignment form. ACM SIGPLAN Notices, Papers from the 1995

ACM SIGPLAN Workshop on Intermediate Representations 30, 3 (Mar.), 13–22.

Pearlmutter, B. A. 1994. Fast exact multiplication by the Hessian. Neural

Computation 6, 1, 147–160.

Pearlmutter, B. A. and Siskind, J. M. 2007. Lazy multivariate higher-order
forward-mode AD. In Proceedings of the 2007 Symposium on Principles of Pro-

gramming Languages. Nice, France, 155–60.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.

1992. Numerical Recipes in C , 2nd ed. Cambridge University Press, New York,
NY.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Reverse-Mode AD in a Functional Framework · 35

Rall, L. B. 1981. Automatic Differentiation: Techniques and Applications, Lecture

Notes in Computer Science 120. Springer-Verlag, New York, NY.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. 1986. Learning
representations by back-propagating errors. Nature 323, 533–6.

Sabry, A. and Felleisen, M. 1993. Reasoning about programs in continuation-
passing style. Lisp and Symbolic Computation 6, 3–4, 289–360.

Siskind, J. M. 1999. Flow-directed lightweight closure conversion. Tech. Rep.
99-190R, NEC Research Institute, Inc.

Siskind, J. M. and Pearlmutter, B. A. 2005. Perturbation confusion and ref-
erential transparency: Correct functional implementation of forward-mode AD.
In Implementation and Application of Functional Languages—17th International

Workshop, IFL’05, A. Butterfield, Ed. Dublin, Ireland, 1–9. Trinity College
Dublin Computer Science Department Technical Report TCD-CS-2005-60.

Siskind, J. M. and Pearlmutter, B. A. 2007. Nesting forward-mode AD in a
functional framework. Higher Order and Symbolic Computation. To appear.

Speelpenning, B. 1980. Compiling fast partial derivatives of functions given by
algorithms. Ph.D. thesis, Department of Computer Science, University of Illinois
at Urbana-Champaign.

Sussman, G. J., Wisdom, J., and Mayer, M. E. 2001. Structure and Interpre-

tation of Classical Mechanics. MIT Press, Cambridge, MA.

Wengert, R. E. 1964. A simple automatic derivative evaluation program. Comm.

of the ACM 7, 8, 463–4.

Werbos, P. J. 1992. Neural networks, system identification, and control in the
chemical process industries. In Handbook of Intelligent Control—Neural, Fuzzy,

and Adaptive approaches, D. A. White and D. A. Sofge, Eds. Van Norstrand
Reinhold, Chapter 10, 283–356.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

