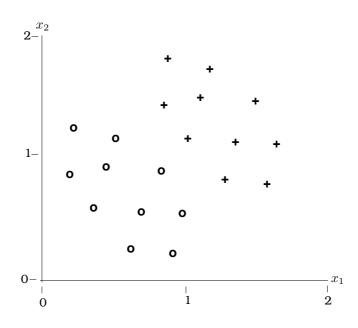
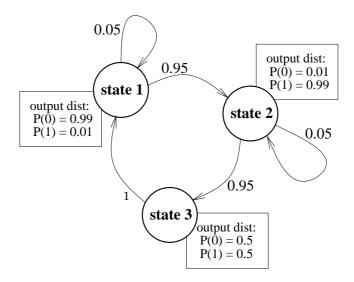
CS401 Final Exam — Fall 2005


Instructions: Answer all five (5) questions. The three you do best on will be worth 25 points each. The one you do fourth-best on will be worth 15 points. The one you do fifth-best on will be worth 10 points. Please show any relevant calculations. (And be sure to include your name!)

- **(I)** Define *supervised* vs *unsupervised* learning, and give an example of one supervised learning algorithm and one unsupervised learning algorithm.
- (II) What is the VC dimension of the concept class of triangles in a 2D input space? (Reminder: this is the maximum number of points that can be "shattered" by triangles.)
- (III) Below is a set of p inputs $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(p)}$ in a 2D input space. These are divided into two classes, $\mathbf{x}^{(i)} \mapsto y^{(i)}$, with $y^{(i)} = 0$ marked as **o** below and $y^{(i)} = 1$ marked as **+** below.

Consider the linear discriminator $\hat{y} = \begin{cases} 0 & \text{if } \mathbf{w} \cdot \mathbf{x} < \theta \\ 1 & \text{if } \mathbf{w} \cdot \mathbf{x} > \theta \end{cases}$


where w_1 , w_2 , and θ constitute the three modifiable parameters of the learning machine.

- (a) In the diagram below, circle the input points which would be classified with + by the setting $(w_1, w_2, \theta) = (1, 0, 1)$.
- (b) Give a value for (w_1, w_2, θ) which classifies the points correctly, according to the labels with which they are marked in the diagram below.

(IV) Briefly describe cross validation and how it can be used to avoid overfitting.

(V) Consider the below Hidden Markov Model. This model has three states, and two output symbols "0" and "1". The initial state distribution is $(\pi(1), \pi(2), \pi(3)) = (1, 0, 0)$, in other words the machine always starts in state 1. The state transition probabilities, and the output symbol probabilities associated with each state, are shown below.

(a) Give a length-ten sequence of states *and* a corresponding sequence of observable output symbols which you choose to be *likely* to be produced by this machine.

state sequence:						
output symbol sequence:						

(b) Give a length-ten sequence of states *and* a corresponding sequence of observable output symbols which you choose to be *unlikely but not impossible* to be produced by this machine.

	state	sequence
output s	ymbol	sequence

e:					
с.					
e:					
ν.					