Hidden Markov Model Cheat Sheet

Barak A. Pearlmutter

(CVS: hmm.tex 1.8)

This document is a "cheat sheet" on Hidden Markov Models (HMMs). It resembles lecture notes, except that it cuts to the chase a little faster by defining terms and divulging the useful formulas as quickly as possible, in the place of gentle explanations and intuitions.

1 Notation

HMM:

- states are not observable.
- observations are probabilistic function of state
- state transitions are probabilistic
N : number of hidden states, numbered $1, \ldots, N$
M : number of output symbols, numbered $1, \ldots, M$
T : number of time steps in sequence of states and sequence of output symbols \vec{q} : sequence of states traversed, $\vec{q}=\left(q_{1}, \ldots, q_{t}, \ldots, q_{T}\right)$ where each $q_{t} \in\{1, \ldots, N\}$ \vec{o} : observed output symbol sequence, $\vec{o}=\left(o_{1}, \ldots, o_{t}, \ldots, o_{T}\right)$ where $o_{t} \in\{1, \ldots, M\}$
A: state transition matrix, $a_{i j}=P\left(q_{t+1}=j \mid q_{t}=i\right)$
B : per-state observation distributions, $b_{i}(k)=P\left(o_{t}=k \mid q_{t}=i\right)$
$\vec{\pi}$: initial state distribution, $\pi_{i}=P\left(q_{1}=i\right)$
λ : all numeric parameters defining the HMM considered together, $\lambda=(\mathbf{A}, B, \vec{\pi})$
indices: i, j index states; k indexes output symbols; t indexes time
We proceed to review the solutions to the three big HMM problems: finding $P(\vec{o} \mid \lambda)$, finding $\vec{q}^{*}=\operatorname{argmax}_{\vec{q}} P(\vec{q} \mid \vec{o}, \lambda)$, and finding $\lambda^{*}=\operatorname{argmax}_{\lambda} P(\vec{o} \mid \lambda)$.

2 Probability of sequence of observations

We wish to calculate $P(\vec{o} \mid \lambda)$.

Definition: $\alpha_{t}(i)=P\left(o_{1}, \ldots, o_{t}, q_{t}=i \mid \lambda\right)$. (In words: the probability of observing the head of length t of the observations and being in state i after that.)
Initialization: $\alpha_{1}(i)=\pi_{i} b_{i}\left(o_{1}\right)$.
Loop: $\alpha_{t+1}(j)=\left(\sum_{i=1}^{N} \alpha_{t}(i) a_{i j}\right) b_{j}\left(o_{t+1}\right)$
At termination, $P(\vec{o} \mid \lambda)=\sum_{i=1}^{N} \alpha_{T}(i)$.
Note: complexity is $\mathcal{O}\left(N^{2} T\right)$ time, $\mathcal{O}(N T)$ space.
Note: calculating the α values is called the "forward algorithm."

3 Optimal state sequence from observations

Find $\vec{q}^{*}=\operatorname{argmax}_{\vec{q}} P(\vec{q} \mid \vec{o}, \lambda)$, the most likely sequence of hidden states given the observations.
Note: calculating the most likely sequence of states is called a "Viterbi alignment."
Definition: $\beta_{t}(i)=P\left(o_{t+1}, o_{t+2}, \ldots, o_{T} \mid q_{t}=i, \lambda\right)$. (In words: the probability that starting in state i at time t, then generating the remaining tail of the observations.)
Initialization: $\beta_{T}(i)=1$.
Loop: $\beta_{t}(i)=\sum_{j=1}^{N} a_{i j} b_{j}\left(o_{t+1}\right) \beta_{t+1}(j)$. Calculated backwards: $t=T-1, T-2, \ldots, 1$.
Note: calculating the β values is called the "backward algorithm."
Define:

$$
\delta_{t}(i)=\max _{q_{1}, \ldots, q_{t-1}} P\left(q_{1}, \ldots, q_{t-1}, q_{t}=i, o_{1}, \ldots, o_{t} \mid \lambda\right) .
$$

(In words: the probability of generating the head of length t of observables and having gone through the most likely states for the first $t-1$ steps and ending up in state i.)
Initialization: $\delta_{1}(i)=\pi_{i} b_{i}\left(o_{1}\right)$
Loop: $\delta_{t}(j)=\left(\max _{i} \delta_{t-1}(i) a_{i j}\right) b_{j}\left(o_{t}\right)$
Initialization: $\psi_{1}(i)=0$
Loop: $\psi_{t}(j)=\underset{i}{\operatorname{argmax}} \delta_{t-1}(i) a_{i j}$
Termination: $P^{*}=\max _{i} \delta_{T}(i)$, the probability of generating the entire sequence of observables via the most probable sequence of states.

Termination: $q_{T}^{*}=\underset{i}{\operatorname{argmax}} \delta_{T}(i)$, the most probable final state.
Loop to find state sequence ("backtracking"): $q_{t}^{*}=\psi_{t+1}\left(q_{t+1}^{*}\right)$
Note: ψ is written "psi" in English, and pronounced "p'sai."

3.1 Useful property of α and β

Note that

$$
\begin{aligned}
\sum_{i} \alpha_{t}(i) \beta_{t}(i) & =\sum_{i} P\left(o_{1}, \ldots, o_{t}, q_{t}=i \mid \lambda\right) P\left(o_{t+1}, o_{t+2}, \ldots, o_{T} \mid q_{t}=i, \lambda\right) \\
& =\sum_{i} P\left(o_{1}, \ldots, o_{t}, o_{t+1}, o_{t+2}, \ldots, o_{T}, q_{t}=i \mid \lambda\right) \\
& =\sum_{i} P\left(\vec{o}, q_{t}=i \mid \lambda\right) \\
& =P(\vec{o} \mid \lambda)
\end{aligned}
$$

This logic holds for any t, so the given sum should be the same for any t. (The earlier formula for $P(\vec{o} \mid \lambda)$ was for the special case $t=T$ since $\beta_{T}(i)=1$.) This formula thus provides a useful debugging test for HMM programs.

4 Estimate model parameters

Given \vec{o} find $\lambda^{*}=\operatorname{argmax}_{\lambda} P(\vec{o} \mid \lambda)$.
Not an analytic solution. Instead, we start with a guess of λ, typically random, then iterate λ to a local maximum, using an EM algorithm. At each step we "reestimate" a new λ, called $\hat{\lambda}$, which has an increased probability of generating \vec{o}. (Or if already at a (possibly local) optimum, the same probability.)
Note: this process is called "Baum-Welch Re-Estimation."
Typical stopping rule for this re-estimation loop is:

$$
\text { stop when } \quad \log P(\vec{o} \mid \hat{\lambda})-\log P(\vec{o} \mid \lambda)<\epsilon \quad \text { for some small } \epsilon
$$

Note: debugging hint, $P(\vec{o} \mid \hat{\lambda}) \geq P(\vec{o} \mid \lambda)$ should always be true.
Definition: $\gamma_{t}(i)=P\left(q_{t}=i \mid \vec{o}, \lambda\right)$. (In words: the probability of having been in state i at time t.)

$$
\gamma_{t}(i)=\frac{\alpha_{t}(i) \beta_{t}(i)}{P(\vec{o} \mid \lambda)}
$$

Definition: $\xi_{t}(i, j)=P\left(q_{t}=i, q_{t+1}=j \mid \vec{o}, \lambda\right)$. (In words: the probability of having transitioned from state i to j at time t.)

$$
\xi_{t}(i, j)=\frac{\alpha_{t}(i) a_{i j} b_{j}\left(o_{t+1}\right) \beta_{t+1}(j)}{P(\vec{o} \mid \lambda)}
$$

Note: $\sum_{i} \gamma_{t}(i)=1$ and $\sum_{i} \sum_{j} \xi_{t}(i, j)=1$.
Note: ξ is written "xi" in English, and pronounced "k'sai."
We write "\#" to abbreviate the phrase "expected number of times"
\# state i visited: $\sum_{t=1}^{T} \gamma_{t}(i)$
\# transitions from state i to state j is: $\sum_{t=1}^{T-1} \xi_{t}(i, j)$

$$
\begin{gathered}
\hat{\pi}_{i}=\frac{\gamma_{1}(i)}{\sum_{j} \gamma_{1}(j)}=\gamma_{1}(i) \\
\hat{a}_{i j}=\frac{\# \text { transitions state } i \text { to state } j}{\# \text { transitions from state } i}=\frac{\sum_{t=1}^{T-1} \xi_{t}(i, j)}{\sum_{t=1}^{T-1} \gamma_{t}(i)} \\
\hat{b}_{j}(k)=\frac{\# \text { in state } j \text { and output symbol } k}{\# \text { in state } j}=\frac{\sum_{t=1}^{T}\left[o_{t}=k\right] \gamma_{t}(j)}{\sum_{t=1}^{T} \gamma_{t}(j)}
\end{gathered}
$$

where we use Knuth notation, [boolean_condition] $=1$ or 0 depending on whether boolean_condition is true or false.

4.1 Training on multiple sequences

The above is for one output observable sequence \vec{o}. If there are multiple such observable output sequences, i.e. a training set of them, then the basic variables defined above (α, β, etc) are computed for each of them. Except for the re-estimation formulas, which need to sum over them as an "outer" sum around the sums shown.
We use a superscript (p) to indicate values computed for observable sequence $\vec{o}^{(p)}$. Note that λ and N and M are independent of p, but T is not since each string in the training set might be a different length, $T^{(p)}=\operatorname{dim} \vec{o}^{(p)}$.

The update formulas become:

$$
\begin{gathered}
\hat{\pi}_{i}=\frac{\sum_{p} \gamma_{1}^{(p)}(i)}{\sum_{p} 1} \\
\hat{a}_{i j}=\frac{\text { \# transitions state } i \text { to state } j}{\# \text { transitions from state } i}=\frac{\sum_{p} \sum_{t=1}^{T^{(p)}-1} \xi_{t}^{(p)}(i, j)}{\sum_{p}^{T^{(p)}-1} \sum_{t=1}^{(p)} \gamma_{t}(i)} \\
\hat{b}_{j}(k)=\frac{\text { \# in state } j \text { and output symbol } k}{\text { \# in state } j}=\frac{\sum_{p} \sum_{t=1}^{T^{(p)}}\left[o_{t}^{(p)}=k\right] \gamma_{t}^{(p)}(j)}{\sum_{p} \sum_{t=1}^{T^{(p)}} \gamma_{t}^{(p)}(j)}
\end{gathered}
$$

