Hidden Markov Model Cheat Sheet

Barak A. Pearlmutter

(CVS: hmm.tex 1.8)

This document is a "cheat sheet" on Hidden Markov Models (HMMs). It resembles lecture notes, except that it cuts to the chase a little faster by defining terms and divulging the useful formulas as quickly as possible, in the place of gentle explanations and intuitions.

1 Notation

HMM:

- states are not observable.
- observations are probabilistic function of state
- state transitions are probabilistic

N: number of hidden states, numbered $1, \ldots, N$

M: number of output symbols, numbered $1, \ldots, M$

T: number of time steps in sequence of states and sequence of output symbols

 \vec{q} : sequence of states traversed, $\vec{q} = (q_1, \dots, q_t, \dots, q_T)$ where each $q_t \in \{1, \dots, N\}$

$$\vec{o}$$
: observed output symbol sequence, $\vec{o} = (o_1, \dots, o_t, \dots, o_T)$ where $o_t \in \{1, \dots, M\}$

A: state transition matrix, $a_{ij} = P(q_{t+1} = j | q_t = i)$

B: per-state observation distributions, $b_i(k) = P(o_t = k | q_t = i)$

 $\vec{\pi}$: initial state distribution, $\pi_i = P(q_1 = i)$

 λ : all numeric parameters defining the HMM considered together, $\lambda = (\mathbf{A}, B, \vec{\pi})$ indices: *i*, *j* index states; *k* indexes output symbols; *t* indexes time

We proceed to review the solutions to the three big HMM problems: finding $P(\vec{o} | \lambda)$, finding $\vec{q}^* = \operatorname{argmax}_{\vec{q}} P(\vec{q} | \vec{o}, \lambda)$, and finding $\lambda^* = \operatorname{argmax}_{\lambda} P(\vec{o} | \lambda)$.

2 Probability of sequence of observations

We wish to calculate $P(\vec{o} \mid \lambda)$.

Definition: $\alpha_t(i) = P(o_1, \ldots, o_t, q_t = i | \lambda)$. (In words: the probability of observing the head of length t of the observations and being in state i after that.)

Initialization: $\alpha_1(i) = \pi_i b_i(o_1)$.

Loop:
$$\alpha_{t+1}(j) = \left(\sum_{i=1}^{N} \alpha_t(i) a_{ij}\right) b_j(o_{t+1})$$

At termination, $P(\vec{o} \mid \lambda) = \sum_{i=1}^{N} \alpha_T(i).$

Note: complexity is $\mathcal{O}(N^2T)$ time, $\mathcal{O}(NT)$ space.

Note: calculating the α values is called the "forward algorithm."

3 Optimal state sequence from observations

Find $\vec{q}^* = \operatorname{argmax}_{\vec{q}} P(\vec{q} \mid \vec{o}, \lambda)$, the most likely sequence of hidden states given the observations.

Note: calculating the most likely sequence of states is called a "Viterbi alignment."

Definition: $\beta_t(i) = P(o_{t+1}, o_{t+2}, \dots, o_T | q_t = i, \lambda)$. (In words: the probability that starting in state *i* at time *t*, then generating the remaining tail of the observations.) Initialization: $\beta_T(i) = 1$.

Loop:
$$\beta_t(i) = \sum_{j=1}^N a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)$$
. Calculated backwards: $t = T - 1, T - 2, \dots, 1$.

Note: calculating the β values is called the "backward algorithm."

Define:

$$\delta_t(i) = \max_{q_1, \dots, q_{t-1}} P(q_1, \dots, q_{t-1}, q_t = i, o_1, \dots, o_t \mid \lambda).$$

(In words: the probability of generating the head of length t of observables and having gone through the most likely states for the first t - 1 steps and ending up in state i.)

Initialization:
$$\delta_1(i) = \pi_i b_i(o_1)$$

Loop:
$$\delta_t(j) = (\max \delta_{t-1}(i) a_{ij}) b_j(o_t)$$

Initialization: $\psi_1(i) = 0$

Loop: $\psi_t(j) = \operatorname{argmax} \delta_{t-1}(i) a_{ij}$

Termination: $P^* = \max_i \delta_T(i)$, the probability of generating the entire sequence of observables via the most probable sequence of states.

Termination: $q_T^* = \operatorname*{argmax}_{i} \delta_T(i)$, the most probable final state.

Loop to find state sequence ("backtracking"): $q_t^* = \psi_{t+1}(q_{t+1}^*)$ Note: ψ is written "psi" in English, and pronounced "p'sai."

3.1 Useful property of α and β

Note that

$$\sum_{i} \alpha_{t}(i) \beta_{t}(i) = \sum_{i} P(o_{1}, \dots, o_{t}, q_{t} = i \mid \lambda) P(o_{t+1}, o_{t+2}, \dots, o_{T} \mid q_{t} = i, \lambda)$$
$$= \sum_{i} P(o_{1}, \dots, o_{t}, o_{t+1}, o_{t+2}, \dots, o_{T}, q_{t} = i \mid \lambda)$$
$$= \sum_{i} P(\vec{o}, q_{t} = i \mid \lambda)$$
$$= P(\vec{o} \mid \lambda)$$

This logic holds for any t, so the given sum should be the same for any t. (The earlier formula for $P(\vec{o} | \lambda)$ was for the special case t = T since $\beta_T(i) = 1$.) This formula thus provides a useful debugging test for HMM programs.

4 Estimate model parameters

Given \vec{o} find $\lambda^* = \operatorname{argmax}_{\lambda} P(\vec{o} \mid \lambda)$.

Not an analytic solution. Instead, we start with a guess of λ , typically random, then iterate λ to a local maximum, using an EM algorithm. At each step we "reestimate" a new λ , called $\hat{\lambda}$, which has an increased probability of generating \vec{o} . (Or if already at a (possibly local) optimum, the same probability.)

Note: this process is called "Baum-Welch Re-Estimation."

Typical stopping rule for this re-estimation loop is:

stop when $\log P(\vec{o} \mid \hat{\lambda}) - \log P(\vec{o} \mid \lambda) < \epsilon$ for some small ϵ

Note: debugging hint, $P(\vec{o} \mid \hat{\lambda}) \ge P(\vec{o} \mid \lambda)$ should always be true.

Definition: $\gamma_t(i) = P(q_t = i \mid \vec{o}, \lambda)$. (In words: the probability of having been in state *i* at time *t*.)

$$\gamma_t(i) = \frac{\alpha_t(i) \,\beta_t(i)}{P(\vec{o} \mid \lambda)}$$

Definition: $\xi_t(i,j) = P(q_t = i, q_{t+1} = j | \vec{o}, \lambda)$. (In words: the probability of having transitioned from state *i* to *j* at time *t*.)

$$\xi_t(i,j) = \frac{\alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)}{P(\vec{o} \mid \lambda)}$$

Note: $\sum_i \gamma_t(i) = 1$ and $\sum_i \sum_j \xi_t(i, j) = 1$.

Note: ξ is written "xi" in English, and pronounced "k'sai."

We write "#" to abbreviate the phrase "expected number of times"

state *i* visited: $\sum_{t=1}^{T} \gamma_t(i)$

transitions from state *i* to state *j* is: $\sum_{t=1}^{T-1} \xi_t(i, j)$

$$\hat{\pi}_i = \frac{\gamma_1(i)}{\sum_j \gamma_1(j)} = \gamma_1(i)$$

$$\hat{a}_{ij} = \frac{\text{\# transitions state } i \text{ to state } j}{\text{\# transitions from state } i} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \gamma_t(i)}$$

$$\hat{b}_j(k) = \frac{\text{\# in state } j \text{ and output symbol } k}{\text{\# in state } j} = \frac{\sum_{t=1}^{T-1} [o_t = k] \gamma_t(j)}{\sum_{t=1}^{T} \gamma_t(j)}$$

where we use Knuth notation, $[boolean_condition] = 1$ or 0 depending on whether $boolean_condition$ is true or false.

4.1 Training on multiple sequences

The above is for *one* output observable sequence \vec{o} . If there are multiple such observable output sequences, *i.e.* a training set of them, then the basic variables defined above (α , β , etc) are computed for each of them. Except for the re-estimation formulas, which need to sum over them as an "outer" sum around the sums shown.

We use a superscript (p) to indicate values computed for observable sequence $\vec{o}^{(p)}$. Note that λ and N and M are independent of p, but T is not since each string in the training set might be a different length, $T^{(p)} = \dim \vec{o}^{(p)}$. The update formulas become:

$$\begin{aligned} \hat{\pi}_i &= \frac{\sum\limits_p \gamma_1^{(p)}(i)}{\sum\limits_p 1} \\ \hat{a}_{ij} &= \frac{\text{\# transitions state } i \text{ to state } j}{\text{\# transitions from state } i} = \frac{\sum\limits_p \sum\limits_{t=1}^{T^{(p)}-1} \xi_t^{(p)}(i,j)}{\sum\limits_p \sum\limits_{t=1}^{T^{(p)}-1} \gamma_t^{(p)}(i)} \\ \hat{b}_j(k) &= \frac{\text{\# in state } j \text{ and output symbol } k}{\text{\# in state } j} = \frac{\sum\limits_p \sum\limits_{t=1}^{T^{(p)}} \gamma_t^{(p)}(i)}{\sum\limits_p \sum\limits_{t=1}^{T^{(p)}} \gamma_t^{(p)}(j)} \end{aligned}$$