
Assignment 2: Scheme Finger Exercises CS351—Fall 2008

Due 09:00 09-Oct-2008. Email text file of solutions to: barak+cs351-hw1@cs.nuim.ie.

1. Scan the R5RS manual and find a few functions that are generalized in interesting ways.

Explain why you think they were generalized in that way. (Examples are <= or -, which are

generalized to accept a number of arguments other than 2.)

Solution: Many functions that one would expect to be binary and associative instead

take as many arguments as one might wish. Examples: append, +, *, string-append.
In the one-argument case these all return that argument, so (* x) ⇒ x, etc. And in

the zero-argument case they return the identity element, so (append) ⇒ (), (+) ⇒ 0,
(*) ⇒ 1, (string-append) ⇒ "".

Others functions which are usually binary are generalized idiosyncratically, so in the

one-argument case - gives (- x) ⇒ −x, while in the two-or-more-arguments case it

gives (- x y) ⇒ x − y or in general (- x y1 y2 . . . yn) ⇒ x − y1 − y2 · · · − yn. Similarly

(/ x) ⇒ 1/x while (/ x y1 . . . yn) ⇒ x/(y1 · · · yn).

An exception is the list* function. For some reason, cons was not simply generalized;

instead the apparently redundant list* was introduced, which when given n arguments

“conses” the first n − 1 successively onto the n-th, so (list* x1 x2 . . . xn−1 xn) =
(cons x1 (cons x2 · · · (cons xn−1 xn)· · ·)). This is a strict generalization of cons.
Note that (list* x1 x2 . . . xn−1 xn) = (append (list x1 . . . xn−1) xn).

Some comparison predicates, like = and <, are generalized from two arguments to two-

or-more arguments, for instance (< x1 x2 . . . xn) ⇒ x1 < x2 ∨ x2 < x3 ∨ · · · ∨ xn−1 < xn.

Others, like equal? and eq?, are not. None are generalized to zero or one argument

(returning true in those cases), even though this would seem natural.

2. Define list-sum-squares which takes a list of numbers and returns the sum of their

squares.

Example: (list-sum-squares (list 1 4 1)) ⇒ 18

Solution:

(define list-sum-squares
(lambda (nums)

(if (null? nums)
0
(+ (expt (car nums) 2)

(list-sum-squares (cdr nums))))))

or

(define list-sum-squares
(lambda (nums)

(if (null? nums)
(+)
(+ (expt (car nums) 2)

(list-sum-squares (cdr nums))))))



3. Define list-product-sqrts which takes a list of non-negative numbers and returns the

product of their square roots.

Example: (list-product-sqrts (list 4 9)) ⇒ 6

Solution:

(define list-product-sqrts
(lambda (nums)

(if (null? nums)
1
(* (sqrt (car nums))

(list-product-sqrts (cdr nums))))))

or

(define list-product-sqrts
(lambda (nums)

(if (null? nums)
(*)
(* (sqrt (car nums))

(list-product-sqrts (cdr nums))))))

or

(define list-product-sqrts
(lambda (nums)

(apply * (map sqrt nums))))

4. Define set-union which takes two lists representing sets and returns a list representing

their union. (Ordering is unimportant.)

Example: (set-union (list 1 2 3 4) (list 6 4 8 2)) ⇒ (1 2 3 4 6 8) (or (3 1 8
4 2 6) or any other rearrangement of the elements.)

Solution:

(define set-union
(lambda (s1 s2)

(cond ((null? s1) s2)
((member (car s1) s2)
(set-union (cdr s1) s2))
(else (cons (car s1)

(set-union (cdr s1) s2))))))

5. Define set-intersection which takes two lists representing sets and returns a list

representing their intersection.

Example: (set-intersection (list 3 1 2 4) (list 4 2 8 6)) ⇒ (2 4) (or (4 2))

Solution:

2



(define set-intersection
(lambda (s1 s2)

(cond ((null? s1) ’())
((member (car s1) s2)
(cons (car s1)

(set-intersection (cdr s1) s2)))
(else (set-intersection (cdr s1) s2)))))

6. Define set-disjoint? which takes two lists representing sets and returns true iff the sets

are disjoint.

Solution:

(define set-disjoint?
(lambda (s1 s2)

(null? (set-intersection s1 s2))))

or

(define set-disjoint?
(lambda (s1 s2)

(or (null? s1)
(and (not (member (car s1) s2))

(set-disjoint (cdr s1) s2)))))

7. Define filter-numbers which takes a list representing a set and returns a list

representing a set containing only those members that are numbers, i.e., that pass the

number? predicate.

Example: (filter-numbers ’(1 one 2 two foo zero 22/7 0)) ⇒ (1 2 22/7 0) (or a

permutation thereof.)

Solution:

(define filter-numbers
(lambda (lis)

(cond ((null? lis) lis)
((number? (car lis))
(cons (car lis) (filter-numbers (cdr lis))))
(else (filter-numbers (cdr lis))))))

8. Define set-equal? which takes two lists representing sets and returns true iff they

represent the same set.

Example: (set-equal? ’(1 2 3) ’(2 1 3)) ⇒ #t

Example: (set-equal? ’(1 2 () 3) ’(2 1 3)) ⇒ #f

Solution:

3



(define set-equal?
(lambda (s1 s2)

(and (set-subset? s1 s2)
(set-subset? s2 s1))))

(define set-subset?
(lambda (s1 s2)

(or (null? s1)
(and (member (car s1) s2)

(set-subset? (cdr s1) s2)))))

9. Define deep-member? which takes a symbol and an s-expression and returns true iff the

symbol occurs in the given s-expression, perhaps very deeply nested.

Example: (deep-member ’foo ’(a b (c (d e foo g)) h)) ⇒ #t

Example: (deep-member ’foo ’(a b (c (d e bar g)) h)) ⇒ #f

Solution:

(define deep-member
(lambda (a s)

(or (equal? a s)
(and (pair? s)

(or (deep-member a (car s))
(deep-member a (cdr s)))))))

10. Optional: If you encountered any problems with the assignment, or have any comments on

it, or other comments or suggestions, I would appreciate hearing them. As practice for

working in industry, where weekly reports are not unusual, please embody these in a brief

(1–3 page) typed report.

Solution: This is my favourite class ever. The only suggestion I would make is to give

longer and harder assignments, and assign more of them, so I can enjoy more practice

programming, which I so love.

Hint: use recursion and make your base cases as simple as possible.

Honor Code: You may discuss these with others, but please write your answers by yourself

and without reference to communal notes. In other words, your answers should be from

your own head.

4


