
Assignment 4: Interpreter and More Higher-Order Functions

CS351—Fall 2008

Due 23:59 Sun 2-Nov-2008. Email one text file containing all your solutions to:
barak+cs351-hw4@cs.nuim.ie. (This file should be loadable into Scheme, meaning essay question
answers should be in comments.)

For the first few questions, assume these are available:

(define reduce-r
(lambda (f x0 lis)

(if (null? lis)
x0
(f (car lis) (reduce-r f x0 (cdr lis))))))

(define reduce-l
(lambda (f x0 lis)

(if (null? lis)
x0
(reduce-l f (f x0 (car lis)) (cdr lis)))))

1. Define the function comb such that

(cadr (reduce-r comb ’(-1e100 ?) ’((x0 v0) . . . (xn vn))))

returns the vi paired with the maximal xi, where x0, . . . , xn are numbers > −10
100. (In the case where

the list is empty it should return ?.)

Solution:

;;; Take two elements, return the one with the larger car
(define comb

(lambda (x y)
(if (>= (car x) (car y)) x y)))

2. Define the function comb-2 such that

(reduce-r comb-2 ’((-1e100 ?)) ’((x0 v0) . . . (xn vn)))

returns a list of two elements, ((xi vi) (xj vj)) where xi and xj are the two largest numbers in
x0, . . . , xn, which themselves are, as above, > −10

100. (In the case where the list is empty it should
return ((-1e100 ?)) and in the case where the list has one element it should return a list of two
elements: that element and (-1e100 ?).)

Solution:

;;; Take an item and a list of items, return a list of the
;;; items (at most two) from them both with the biggest cars
(define comb2

(lambda (x ys) ; x is new one, ys is list of best so far
(let ((z (sort (cons x ys)

(lambda (a b)
(> (car a) (car b))))))

(if (> (length z) 2)
(take z 2)
z))))

3. What is the difference, as far as users are concerned, between reduce-r and reduce-l? Show a set
of arguments which, when passed to either, give different results.



Solution:

(reduce-l f x (e1 . . . en)) ⇒ (f (f · · · (f (f x e1) e2)· · ·) en)

(reduce-r f x (e1 . . . en)) ⇒ (f e1 (f e2 (f · · · (f en x) · · ·)))

These can differ if f is not associative, or if x is not an identity element of f.

Example of these differing:

(reduce-l list ’x ’(a b c)) ⇒ (((x a) b) c)

(reduce-r list ’x ’(a b c)) ⇒ (a (b (c x)))

4. Add macro expanders for and, or and cond to the meta-circular interpreter defined in class. (The
expander for cond only needs to handle clauses of the form (test val) and the terminal clause
(else val); you can forget (A => B) clauses.) Be sure these work for the cases of one, or even
zero, argument forms. (Note that it is okay to use the same macros in sub-forms of the form being
expanded, as long as the expansions ultimately terminate. For instance, you could expand
(or A B C) to (let ((v A)) (if v v (or B C))) and rely on subsequent evaluation to expand
the let and or forms contained in that output form.

EXTRA CREDIT: Augment your macro expander for cond to handle (A => B) clauses and also
clauses of the form (A) which return A if it is true, and go on to the next clause otherwise.

Solution:

;;; Added and modified code from lecture file: 10a.scm

(define expand-and
(lambda (e)
(cond ((null? (cdr e)) ’#t)

((null? (cddr e)) (cadr e))
(else (list ’if

(cadr e)
(cons ’and (cddr e)))))))

(define expand-or
(lambda (e)
(cond ((null? (cdr e)) ’#f)

((null? (cddr e)) (cadr e))
(else (list ’let

(list (list ’ttt (cadr e)))
(list ’if ’ttt ’ttt

(cons ’or (cddr e))))))))

(define expand-cond
(lambda (e)

(define expand-clauses
(lambda (clauses)

(if (null? clauses)
’(void)
(expand-clause (car clauses)

(expand-clauses (cdr clauses))))))

(define expand-clause
(lambda (clause else-code)

(cond ((null? (cdr clause))
(expand-clause (list (car clause) ’=> ’(lambda (x) x))

else-code))

2



((and (= (length clause) 3)
(equal? (cadr clause) ’=>))

(list ’let
(list (list ’v (car clause)))
(list ’if ’v (list (caddr clause) ’v) else-code)))

((and (= (length clause) 2)
(equal? (car clause) ’else))

(cadr clause))
((= (length clause) 2)
(list ’if (car clause) (cadr clause) else-code))
(else (error "unknown cond clause shape" clause)))))

(expand-clauses (cdr e))))

(define macro-alist
(list (list ’let expand-let)

(list ’or expand-or)
(list ’and expand-and)
(list ’cond expand-cond)))

5. The language PERL has a “tainted” tag that can be attached to values, which is propagated through
computations. The intent is to ensure that “insecure” input does not result in security policy
violations, by tracking its flow and raising an error if it flows into things like the exec() system call
without sanitization.

Make a similar modification to the meta-circular evaluator from the lecture notes. Represent an
“untainted” value as currently represented, and a “tainted” value x as the list (%tainted x). These
are propagated through computations by the following rules: if any argument to a primitive function
is tainted then its output is tainted. If the test of an if form is tainted then the result returned by
the form is not necessarily tainted. Add “primitive” functions taint and untaint with the obvious
semantics.

Solution:

;;; functions to take a value (possible already tainted) and
;;; make a corresponding tainted value, and to take a tainted
;;; value and make the corresponding untainted value, and to
;;; check if a value is tainted.

(define tainted?
(lambda (x)
(and (pair? x)

(equal? (car x) ’%tainted))))

(define taint
(lambda (x)
(if (tainted? x) x (list ’%tainted x))))

(define untaint
(lambda (x)
(if (tainted? x) (cadr x) x)))

;;; Modify my-apply where it applies a primitive function
;;; to strip & propagate taintedness:

;;; OLD:
;;(define my-apply
;; (lambda (f vals)

3



;; (cond ((procedure? f) (apply f vals))
;; ...)))

;;; NEW:
;;(define my-apply
;; (lambda (f vals)
;; (cond ((procedure? f) (apply-primitive f vals))
;; ...)))

(define apply-primitive
(lambda (f vals)
(let ((y (apply f (map untaint vals))))
(if (any? tainted vals)

(taint y)
y))))

(define any?
(lambda (p? lis)
(and (not (null? lis))

(or (p? (car lis))
(any? p? (cdr lis))))))

6. Make a test suite to test whether your “tainted” code above works. This should be automated, so I
can load your code and type (test-tainted) and the result will be #t if all test cases succeed, and
something else if one or more fail. Be sure your test cases have good coverage!

7. (Optional) If you encountered any problems with the assignment, or have any comments on it, or
other comments or suggestions, I would appreciate hearing them. As practice for actual work, where
weekly reports are not unusual, please embody these in a brief report.

Solution:

This is the best class ever. My only suggestion: longer harder assignments. And more of them!

Honor Code: You may discuss these with others, but please write your answers by yourself and
without reference to communal notes. In other words, your answers should be from your own head.

4


